These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30561206)

  • 41. Dually functioned core-shell NaYF
    Zhang Y; Chen B; Xu S; Li X; Zhang J; Sun J; Zheng H; Tong L; Sui G; Zhong H; Xia H; Hua R
    Sci Rep; 2017 Sep; 7(1):11849. PubMed ID: 28928385
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facile synthesis of Mn-doped ZnS nanocrystals and determination of critical temperature for lattice diffusion process.
    Shen R; Zeng R; Yin Y; Wan J; Sun Z; Zhao Y; Zhao H
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8356-63. PubMed ID: 23421216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of NaLuF4-based nanocrystals and large enhancement of upconversion luminescence of NaLuF4:Gd, Yb, Er by coating an active shell for bioimaging.
    Ouyang J; Yin D; Cao X; Wang C; Song K; Liu B; Zhang L; Han Y; Wu M
    Dalton Trans; 2014 Oct; 43(37):14001-8. PubMed ID: 25120074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Core/Shell semiconductor nanocrystals.
    Reiss P; Protière M; Li L
    Small; 2009 Feb; 5(2):154-68. PubMed ID: 19153991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intense upconversion red emission from Gd-doped NaErF
    Choi JE; Kim D; Jang HS
    Chem Commun (Camb); 2019 Feb; 55(16):2261-2264. PubMed ID: 30608495
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis and upconversion luminescence of NaYF4:Yb, Tm/TiO2 core/shell nanoparticles with controllable shell thickness.
    Zhang D; Zhao D; Zheng K; Liu N; Qin W
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9761-4. PubMed ID: 22413289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Two-Step Synthetic Strategy toward Monodisperse Colloidal CdSe and CdSe/CdS Core/Shell Nanocrystals.
    Zhou J; Pu C; Jiao T; Hou X; Peng X
    J Am Chem Soc; 2016 May; 138(20):6475-83. PubMed ID: 27144923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile synthesis and enhanced near infrared luminescent properties of CaWO4:Ln3+/Na+ (Ln = Nd, Er, and Yb) core/shell microstructure.
    Su Y; Han D; Du C; Peng L; Lv L; Wang X
    J Nanosci Nanotechnol; 2014 May; 14(5):3948-52. PubMed ID: 24734670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared.
    Deng Z; Schulz O; Lin S; Ding B; Liu X; Wei X; Ros R; Yan H; Liu Y
    J Am Chem Soc; 2010 Apr; 132(16):5592-3. PubMed ID: 20364822
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window.
    Shao W; Chen G; Kuzmin A; Kutscher HL; Pliss A; Ohulchanskyy TY; Prasad PN
    J Am Chem Soc; 2016 Dec; 138(50):16192-16195. PubMed ID: 27935695
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface Engineering and Controlled Ripening for Seed-Mediated Growth of Au Islands on Au Nanocrystals.
    Feng J; Xu D; Yang F; Chen J; Wu C; Yin Y
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):16958-16964. PubMed ID: 34077601
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of NaYF4, NaLuF4 and NaGdF4-based upconversion nanocrystals with hydro (solvo) thermal methods.
    Yin D; Song K; Ou Y; Wang C; Liu B; Wu M
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4162-7. PubMed ID: 23862466
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node.
    Xia A; Gao Y; Zhou J; Li C; Yang T; Wu D; Wu L; Li F
    Biomaterials; 2011 Oct; 32(29):7200-8. PubMed ID: 21742376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large scale synthesis of stable tricolor Zn(1-x)Cd(x)Se core/multishell nanocrystals via a facile phosphine-free colloidal method.
    Shen H; Wang H; Zhou C; Niu JZ; Yuan H; Ma L; Li LS
    Dalton Trans; 2011 Sep; 40(36):9180-8. PubMed ID: 21829834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals.
    Ostrowski AD; Chan EM; Gargas DJ; Katz EM; Han G; Schuck PJ; Milliron DJ; Cohen BE
    ACS Nano; 2012 Mar; 6(3):2686-92. PubMed ID: 22339653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging.
    Wang R; Li X; Zhou L; Zhang F
    Angew Chem Int Ed Engl; 2014 Nov; 53(45):12086-90. PubMed ID: 25196421
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nd(3+)-Sensitized Ho(3+) Single-Band Red Upconversion Luminescence in Core-Shell Nanoarchitecture.
    Chen D; Liu L; Huang P; Ding M; Zhong J; Ji Z
    J Phys Chem Lett; 2015 Jul; 6(14):2833-40. PubMed ID: 26266869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A facile synthesis of small-sized and monodisperse hexagonal NaYF4:Yb3+,Er3+ nanocrystals.
    Li D; Shao Q; Dong Y; Jiang J
    Chem Commun (Camb); 2014 Dec; 50(97):15316-8. PubMed ID: 25347526
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lanthanide doping-facilitated growth of ultrasmall monodisperse Ba2LaF7 nanocrystals with excellent photoluminescence.
    Xu CF; Ma M; Yang LW; Zeng SJ; Yang QB
    J Colloid Interface Sci; 2012 Feb; 368(1):49-55. PubMed ID: 22153276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hybrid Au-CdSe and Ag-CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth.
    AbouZeid KM; Mohamed MB; El-Shall MS
    Small; 2011 Dec; 7(23):3299-307. PubMed ID: 21994186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.