BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30561780)

  • 21. Bacterial Nanocellulose Hydrogel: A Promising Alternative Material for the Fabrication of Engineered Vascular Grafts.
    Liu D; Meng Q; Hu J
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellulose-based materials in environmental protection: A scientometric and visual analysis review.
    Jing L; Shi T; Chang Y; Meng X; He S; Xu H; Yang S; Liu J
    Sci Total Environ; 2024 Jun; 929():172576. PubMed ID: 38649055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing.
    Postek MT; Poster DL; Vládar AE; Driscoll MS; LaVerne JA; Tsinas Z; Al-Sheikhly MI
    Radiat Phys Chem Oxf Engl 1993; 2018 Feb; 143():47-52. PubMed ID: 29230084
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Update on Bio-Refining and Nanocellulose Composite Materials Manufacturing.
    Postek MT; Poster DL
    Proc SPIE Int Soc Opt Eng; 2017; 10354():. PubMed ID: 29225398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrathin Films of Cellulose: A Materials Perspective.
    Kontturi E; Spirk S
    Front Chem; 2019; 7():488. PubMed ID: 31380342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development & Characterization of Fluorescently Tagged Nanocellulose for Nanotoxicological Studies.
    Salari M; Bitounis D; Bhattacharya K; Pyrgiotakis G; Zhang Z; Purington E; Gramlich W; Grondin Y; Rogers R; Bousfield D; Demokritou P
    Environ Sci Nano; 2019 May; 6(5):1516-1526. PubMed ID: 31844523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clustering-Triggered Emission of Carboxymethylated Nanocellulose.
    Li M; Li X; An X; Chen Z; Xiao H
    Front Chem; 2019; 7():447. PubMed ID: 31281810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models.
    DeLoid GM; Cao X; Molina RM; Silva DI; Bhattacharya K; Ng KW; Loo SCJ; Brain JD; Demokritou P
    Environ Sci Nano; 2019 Jul; 6(7):2105-2115. PubMed ID: 32133146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the Charge Density of Nanopapers Based on Carboxymethylated Cellulose Nanofibrils Investigated by Complementary Techniques.
    Elert AM; Chen YC; Smales GJ; Topolniak I; Sturm H; Schönhals A; Szymoniak P
    ACS Omega; 2024 May; 9(18):20152-20166. PubMed ID: 38737077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellulose Diacetate Aerogels with Low Drying Shrinkage, High-Efficient Thermal Insulation, and Superior Mechanical Strength.
    Zhang S; Lu K; Hu Y; Xu G; Wang J; Liao Y; Yu S
    Gels; 2024 Mar; 10(3):. PubMed ID: 38534628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of Gelation Techniques for the Fabrication of Cellulose Aerogels.
    Menshutina N; Fedotova O; Trofimova K; Tsygankov P
    Gels; 2023 Nov; 9(12):. PubMed ID: 38131905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Green-in-green biohybrids as transient biotriboelectric nanogenerators.
    Wang C; Lu L; Li W; Shao D; Zhang C; Lu J; Yang W
    iScience; 2022 Dec; 25(12):105494. PubMed ID: 36425758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products.
    Yu S; Sun J; Shi Y; Wang Q; Wu J; Liu J
    Environ Sci Ecotechnol; 2021 Jan; 5():100077. PubMed ID: 36158608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Impact of Surface Charges of Carboxylated Cellulose Nanofibrils on the Water Motions in Hydrated Films.
    Guccini V; Yu S; Meng Z; Kontturi E; Demmel F; Salazar-Alvarez G
    Biomacromolecules; 2022 Aug; 23(8):3104-3115. PubMed ID: 35786867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable and Printable Nanocellulose-Based Ionogels as Gel Polymer Electrolytes for Supercapacitors.
    González-Gil RM; Borràs M; Chbani A; Abitbol T; Fall A; Aulin C; Aucher C; Martínez-Crespiera S
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biopolymer Nanofibers for Nanogenerator Development.
    Bai L; Li Q; Yang Y; Ling S; Yu H; Liu S; Li J; Chen W
    Research (Wash D C); 2021; 2021():1843061. PubMed ID: 33709081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose Obtained by Citric Acid Modification.
    Chutimasakul T; Uetake Y; Tantirungrotechai J; Asoh TA; Uyama H; Sakurai H
    ACS Omega; 2020 Dec; 5(51):33206-33213. PubMed ID: 33403282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen, Phosphorus and Sulfur Co-Doped Pyrolyzed Bacterial Cellulose Nanofibers for Supercapacitors.
    Li Z; Wang Y; Xia W; Gong J; Jia S; Zhang J
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellulose Nanocrystals/Graphene Hybrids-A Promising New Class of Materials for Advanced Applications.
    Trache D; Thakur VK; Boukherroub R
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanofibrillar networks enable universal assembly of superstructured particle constructs.
    Mattos BD; Tardy BL; Greca LG; Kämäräinen T; Xiang W; Cusola O; Magalhães WLE; Rojas OJ
    Sci Adv; 2020 May; 6(19):eaaz7328. PubMed ID: 32494715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.