BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30562165)

  • 1. An active learning framework for enhancing identification of non-artifactual intracranial pressure waveforms.
    Megjhani M; Alkhachroum A; Terilli K; Ford J; Rubinos C; Kromm J; Wallace BK; Connolly ES; Roh D; Agarwal S; Claassen J; Padmanabhan R; Hu X; Park S
    Physiol Meas; 2019 Jan; 40(1):015002. PubMed ID: 30562165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peak detection in intracranial pressure signal waveforms: a comparative study.
    Wei M; Krakauskaite S; Subramanian S; Scalzo F
    Biomed Eng Online; 2024 Jun; 23(1):61. PubMed ID: 38915091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of ventricular drainage on the intracranial pressure signal and the pressure reactivity index.
    Howells T; Johnson U; McKelvey T; Ronne-Engström E; Enblad P
    J Clin Monit Comput; 2017 Apr; 31(2):469-478. PubMed ID: 26987656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integration of Decision Tree and Visual Analysis to Analyze Intracranial Pressure.
    Ji SY; Najarian K; Huynh T; Jeong DH
    Methods Mol Biol; 2017; 1598():405-419. PubMed ID: 28508375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-adaptable intracranial pressure morphology analysis using a probabilistic model-based approach.
    Rashidinejad P; Hu X; Russell S
    Physiol Meas; 2020 Nov; 41(10):104003. PubMed ID: 32992304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals.
    Zhang Q; Zhou D; Zeng X
    Physiol Meas; 2016 Nov; 37(11):1945-1967. PubMed ID: 27681602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subspace decomposition approach toward recognizing valid pulsatile signals.
    Asgari S; Xu P; Bergsneider M; Hu X
    Physiol Meas; 2009 Nov; 30(11):1211-25. PubMed ID: 19794232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic identification of intracranial pressure waveform during external ventricular drainage clamping: segmentation via wavelet analysis.
    Megjhani M; Terilli K; Kwon SB; Nametz D; Weinerman B; Velazquez A; Ghoshal S; Roh D; Agarwal S; Connolly ES; Claassen J; Park S
    Physiol Meas; 2023 Jul; 44(6):. PubMed ID: 37327793
    [No Abstract]   [Full Text] [Related]  

  • 9. Intracranial pressure signal morphology: real-time tracking.
    Scalzo F; Bergsneider M; Vespa PM; Martin NA; Hu X
    IEEE Pulse; 2012 Mar; 3(2):49-52. PubMed ID: 22481746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency interpretation of tidal peak in intracranial pressure wave.
    Shahsavari S; McKelvey T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2689-92. PubMed ID: 19163259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension.
    Hornero R; Aboy M; Abásolo D; McNames J; Goldstein B
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1671-80. PubMed ID: 16235653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. End-to-End Automatic Morphological Classification of Intracranial Pressure Pulse Waveforms Using Deep Learning.
    Mataczynski C; Kazimierska A; Uryga A; Burzynska M; Rusiecki A; Kasprowicz M
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):494-504. PubMed ID: 34115601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. k-Shape clustering for extracting macro-patterns in intracranial pressure signals.
    Martinez-Tejada I; Riedel CS; Juhler M; Andresen M; Wilhjelm JE
    Fluids Barriers CNS; 2022 Feb; 19(1):12. PubMed ID: 35123535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.
    Radüntz T; Scouten J; Hochmuth O; Meffert B
    J Neural Eng; 2017 Aug; 14(4):046004. PubMed ID: 28497769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Intracranial Pressure Monitoring and Its Significance in Managing Traumatic Brain Injury.
    Kawoos U; McCarron RM; Auker CR; Chavko M
    Int J Mol Sci; 2015 Dec; 16(12):28979-97. PubMed ID: 26690122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous cerebral compliance monitoring in severe head injury: its relationship with intracranial pressure and cerebral perfusion pressure.
    Portella G; Cormio M; Citerio G; Contant C; Kiening K; Enblad P; Piper I
    Acta Neurochir (Wien); 2005 Jul; 147(7):707-13; discussion 713. PubMed ID: 15900402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypertonic saline reduces cumulative and daily intracranial pressure burdens after severe traumatic brain injury.
    Mangat HS; Chiu YL; Gerber LM; Alimi M; Ghajar J; Härtl R
    J Neurosurg; 2015 Jan; 122(1):202-10. PubMed ID: 25380107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous monitoring of cerebrovascular pressure-reactivity in head injury.
    Czosnyka M; Smielewski P; Kirkpatrick P; Piechnik S; Laing R; Pickard JD
    Acta Neurochir Suppl; 1998; 71():74-7. PubMed ID: 9779149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic Instability and Cardiovascular Events After Traumatic Brain Injury Predict Outcome After Artifact Removal With Deep Belief Network Analysis.
    Kim H; Lee SB; Son Y; Czosnyka M; Kim DJ
    J Neurosurg Anesthesiol; 2018 Oct; 30(4):347-353. PubMed ID: 28991060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of "dose" of intracranial hypertension to outcome in severe traumatic brain injury.
    Vik A; Nag T; Fredriksli OA; Skandsen T; Moen KG; Schirmer-Mikalsen K; Manley GT
    J Neurosurg; 2008 Oct; 109(4):678-84. PubMed ID: 18826355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.