BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3056246)

  • 1. Paradoxical antibacterial activities of beta-lactams against Proteus vulgaris: mechanism of the paradoxical effect.
    Ikeda Y; Nishino T
    Antimicrob Agents Chemother; 1988 Jul; 32(7):1073-7. PubMed ID: 3056246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paradoxical antibacterial activity of cefmenoxime against Proteus vulgaris.
    Ikeda Y; Nishino T; Tanino T
    Antimicrob Agents Chemother; 1987 Jun; 31(6):865-9. PubMed ID: 3304155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradoxical activity of beta-lactam antibiotics against Proteus vulgaris in experimental infection in mice.
    Ikeda Y; Fukuoka Y; Motomura K; Yasuda T; Nishino T
    Antimicrob Agents Chemother; 1990 Jan; 34(1):94-7. PubMed ID: 2183712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal beta-lactamase expression and resistance to beta-lactam antibiotics in Proteus vulgaris and Morganella morganii.
    Yang YJ; Livermore DM
    Antimicrob Agents Chemother; 1988 Sep; 32(9):1385-91. PubMed ID: 3058021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-lactamase stability and antibacterial activity of cefmenoxime (SCE-1365), a novel cephalosporin.
    Okonogi K; Kuno M; Kida M; Mitsuhashi S
    Antimicrob Agents Chemother; 1981 Aug; 20(2):171-5. PubMed ID: 6269488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible beta-lactamases are principally responsible for the naturally occurring resistance towards beta-lactam antibiotics in Proteus vulgaris.
    Aspiotis A; Cullmann W; Dick W; Stieglitz M
    Chemotherapy; 1986; 32(3):236-46. PubMed ID: 3519112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducer activity of beta-lactam antibiotics for the beta-lactamases of Proteus rettgeri and Proteus vulgaris.
    Yotsuji A; Minami S; Araki Y; Inoue M; Mitsuhashi S
    J Antibiot (Tokyo); 1982 Nov; 35(11):1590-3. PubMed ID: 6761329
    [No Abstract]   [Full Text] [Related]  

  • 8. Properties of an inducible beta-lactamase from Proteus vulgaris.
    Cullmann W; Seibert G
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Aug; 262(2):208-19. PubMed ID: 3538717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of beta-lactamase in Proteus vulgaris.
    Okonogi K; Kuno M; Higashide E
    J Gen Microbiol; 1986 Jan; 132(1):143-50. PubMed ID: 3519851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomally encoded cephalosporin-hydrolyzing beta-lactamase of Proteus vulgaris RO104 belongs to Ambler's class A.
    Péduzzi J; Reynaud A; Baron P; Barthélémy M; Labia R
    Biochim Biophys Acta; 1994 Jul; 1207(1):31-9. PubMed ID: 8043607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cefoxitin, N-formimidoyl thienamycin, clavulanic acid, and penicillanic acid sulfone as suicide inhibitors for different types of beta-lactamases produced by gram-negative bacteria.
    Sawai T; Tsukamoto K
    J Antibiot (Tokyo); 1982 Nov; 35(11):1594-602. PubMed ID: 6298169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Problems related to determination of MICs of oximino-type expanded-spectrum cephems for Proteus vulgaris.
    Ohno A; Ishii Y; Ma L; Yamaguchi K
    J Clin Microbiol; 2000 Feb; 38(2):677-81. PubMed ID: 10655366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between beta-lactamase activity and resistance to beta-lactam antibiotics in Mycobacterium smegmatis.
    Yabu K; Kaneda S; Ochiai T
    Microbiol Immunol; 1985; 29(9):803-9. PubMed ID: 3877858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial activities of amoxicillin alone and in combination with clavulanic acid correlated with beta-lactamase production.
    Hsu LY; Chang SC; Luh KT; Hsieh WC
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1991 Aug; 24(3):272-80. PubMed ID: 1818798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PS-5, a new beta-lactam antibiotic. III. Synergistic effects and inhibitory activity against a beta-lactamase.
    Okamura K; Sakamoto M; Fukagawa Y; Ishikura T; Lein J
    J Antibiot (Tokyo); 1979 Apr; 32(4):280-6. PubMed ID: 381269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro antibacterial activities of ticarcillin alone and ticarcillin plus clavulanic acid against beta-lactamase producing and non-producing microorganisms.
    Hsueh PR; Chang SC; Chen YC; Hsu LY; Luh KT; Hsieh WC
    Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi; 1992 Aug; 25(3):149-59. PubMed ID: 1342000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Bacteroides bivius beta-lactamase in beta-lactam susceptibility.
    Lacroix JM; Lamothe F; Malouin F
    Antimicrob Agents Chemother; 1984 Nov; 26(5):694-8. PubMed ID: 6335019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction/inhibition of chromosomal beta-lactamases by beta-lactamase inhibitors.
    Moosdeen F; Keeble J; Williams JD
    Rev Infect Dis; 1986; 8 Suppl 5():S562-8. PubMed ID: 3026004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of 13 beta-lactam agents combined with BRL 42715 against beta-lactamase producing gram-negative bacteria compared to combinations with clavulanic acid, tazobactam and sulbactam.
    Piddock LJ; Jin YF; Turner HL
    J Antimicrob Chemother; 1993 Jan; 31(1):89-103. PubMed ID: 8383105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation in an animal model and in vitro of the combination clavulanic acid and cephalosporins against beta-lactamase producing and nonproducing Staphylococcus aureus strains.
    de Sá Del Fiol F; Rocha De Mattos Filho T; Groppo FC
    Braz J Infect Dis; 2000 Feb; 4(1):36-42. PubMed ID: 10788844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.