These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30562583)

  • 1. CRISPR-Cas9 induces point mutation in the mucormycosis fungus Rhizopus delemar.
    Bruni GO; Zhong K; Lee SC; Wang P
    Fungal Genet Biol; 2019 Mar; 124():1-7. PubMed ID: 30562583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A
    Wu S; Xu R; Su M; Gao C; Liu Y; Chen Y; Luan G; Jia X; Wang R
    Microbiol Spectr; 2022 Oct; 10(5):e0195722. PubMed ID: 36047802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable and reproducible homologous recombination enables CRISPR-based engineering in the fungus
    Lax C; Navarro-Mendoza MI; Pérez-Arques C; Navarro E; Nicolás FE; Garre V
    Cell Rep Methods; 2021 Dec; 1(8):100124. PubMed ID: 35475217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9-Based Mutagenesis of the Mucormycosis-Causing Fungus
    Ibragimova S; Szebenyi C; Sinka R; Alzyoud EI; Homa M; Vágvölgyi C; Nagy G; Papp T
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32466287
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparative genome-wide analysis of extracellular small RNAs from the mucormycosis pathogen Rhizopus delemar.
    Liu M; Bruni GO; Taylor CM; Zhang Z; Wang P
    Sci Rep; 2018 Mar; 8(1):5243. PubMed ID: 29588481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of genome engineering using the CRISPR-Cas9 system in C. glabrata wild-type and lig4 strains.
    Cen Y; Timmermans B; Souffriau B; Thevelein JM; Van Dijck P
    Fungal Genet Biol; 2017 Oct; 107():44-50. PubMed ID: 28822858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a
    Yang Y; Sun Q; Liu Y; Yin H; Yang W; Wang Y; Liu Y; Li Y; Pang S; Liu W; Zhang Q; Yuan F; Qiu S; Li J; Wang X; Fan K; Wang W; Li Z; Yin S
    J Zhejiang Univ Sci B; 2021 May; 22(5):383-396. PubMed ID: 33973420
    [No Abstract]   [Full Text] [Related]  

  • 12. Cloning of the Rhizopus niveus pyr4 gene and its use for the transformation of Rhizopus delemar.
    Horiuchi H; Takaya N; Yanai K; Nakamura M; Ohta A; Takagi M
    Curr Genet; 1995 Apr; 27(5):472-8. PubMed ID: 7586035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR.
    Suzuki H; Murakami A; Yoshida K
    Appl Environ Microbiol; 2012 Oct; 78(20):7376-83. PubMed ID: 22885745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides.
    Chang Z; Billmyre RB; Lee SC; Heitman J
    PLoS Genet; 2019 Feb; 15(2):e1007957. PubMed ID: 30742617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 using a transient transformation system in Ceriporiopsis subvermispora.
    Nakazawa T; Inoue C; Nguyen DX; Kawauchi M; Sakamoto M; Honda Y
    Appl Microbiol Biotechnol; 2022 Sep; 106(17):5575-5585. PubMed ID: 35902408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic tools for investigating Mucorales fungal pathogenesis.
    Garcia A; Vellanki S; Lee SC
    Curr Clin Microbiol Rep; 2018 Sep; 5(3):173-180. PubMed ID: 30574450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium
    Walker JE; Lanahan AA; Zheng T; Toruno C; Lynd LR; Cameron JC; Olson DG; Eckert CA
    Metab Eng Commun; 2020 Jun; 10():e00116. PubMed ID: 31890588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a plasmid free CRISPR-Cas9 system for the genetic modification of Mucor circinelloides.
    Nagy G; Szebenyi C; Csernetics Á; Vaz AG; Tóth EJ; Vágvölgyi C; Papp T
    Sci Rep; 2017 Dec; 7(1):16800. PubMed ID: 29196656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.