These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30562864)

  • 1. [Gene-modified T cell therapy].
    Ikeda H
    Nihon Rinsho; 2017 Feb; 75(2):275-280. PubMed ID: 30562864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition.
    Houot R; Schultz LM; Marabelle A; Kohrt H
    Cancer Immunol Res; 2015 Oct; 3(10):1115-22. PubMed ID: 26438444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cancer Immunotherapy Utilizing T Cell Receptor Gene Engineering].
    Ikeda H
    Gan To Kagaku Ryoho; 2017 Apr; 44(4):273-277. PubMed ID: 28428503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells.
    Ikeda H
    Int Immunol; 2016 Jul; 28(7):349-53. PubMed ID: 27127191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From a Patient Advocate's Perspective: Does Cancer Immunotherapy Represent a Paradigm Shift?
    Madden DL
    Curr Oncol Rep; 2018 Feb; 20(1):8. PubMed ID: 29411148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Adoptive Cell Therapy with Immune Checkpoint Blockade].
    Aruga A
    Gan To Kagaku Ryoho; 2017 Sep; 44(9):737-741. PubMed ID: 28912399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cancer immunotherapy by immuno-checkpoint blockade].
    Kawakami Y
    Rinsho Ketsueki; 2015 Oct; 56(10):2186-94. PubMed ID: 26458459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy.
    Srivastava S; Riddell SR
    J Immunol; 2018 Jan; 200(2):459-468. PubMed ID: 29311388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial immunotherapy and nanoparticle mediated hyperthermia.
    Moy AJ; Tunnell JW
    Adv Drug Deliv Rev; 2017 May; 114():175-183. PubMed ID: 28625829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redirecting the immune response: role of adoptive T cell therapy.
    Mondino A; Dardalhon V; Hess Michelini R; Loisel-Meyer S; Taylor N
    Hum Gene Ther; 2010 May; 21(5):533-41. PubMed ID: 20201627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving CARs on the Highway to Solid Cancer: Some Considerations on the Adoptive Therapy with CAR T Cells.
    Abken H
    Hum Gene Ther; 2017 Nov; 28(11):1047-1060. PubMed ID: 28810803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Recent advances and future challenges in cancer immunotherapy].
    Okuyama N; Tamada K; Tamura H
    Rinsho Ketsueki; 2016; 57(11):2388-2395. PubMed ID: 27941290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing the Immune System as a Therapeutic Tool in Virus-Associated Cancers.
    Santana-Davila R; Bhatia S; Chow LQ
    JAMA Oncol; 2017 Jan; 3(1):106-112. PubMed ID: 27812682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-directed immunotherapy can generate tumor-specific T cell responses through localized co-stimulation.
    Ellmark P; Mangsbo SM; Furebring C; Norlén P; Tötterman TH
    Cancer Immunol Immunother; 2017 Jan; 66(1):1-7. PubMed ID: 27714433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current status and future prospects of peptide-based cancer vaccines.
    Wada S; Yada E; Ohtake J; Fujimoto Y; Uchiyama H; Yoshida S; Sasada T
    Immunotherapy; 2016 Nov; 8(11):1321-1333. PubMed ID: 27993087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies to genetically engineer T cells for cancer immunotherapy.
    Spear TT; Nagato K; Nishimura MI
    Cancer Immunol Immunother; 2016 Jun; 65(6):631-49. PubMed ID: 27138532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers.
    Gray MJ; Gong J; Hatch MM; Nguyen V; Hughes CC; Hutchins JT; Freimark BD
    Breast Cancer Res; 2016 May; 18(1):50. PubMed ID: 27169467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAR T-cell Therapy: A New Era in Cancer Immunotherapy.
    Miliotou AN; Papadopoulou LC
    Curr Pharm Biotechnol; 2018; 19(1):5-18. PubMed ID: 29667553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of immune checkpoint inhibitors].
    Kitano S
    Rinsho Ketsueki; 2017; 58(8):966-976. PubMed ID: 28883282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.