These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 30562881)
1. Use of Ratiometric Probes with a Spectrofluorometer for Bacterial Viability Measurement. Cléach J; Watier D; Le Fur B; Brauge T; Duflos G; Grard T; Lencel P J Microbiol Biotechnol; 2018 Nov; 28(11):1782-1790. PubMed ID: 30562881 [TBL] [Abstract][Full Text] [Related]
2. Comparative studies on measurement of membrane potential of bacterial cells treated with ZnO nanoparticles by Spectrofluorometry, fluorescence microscopy and flowcytometry. Khater M; Khater SS; Gholap H; Patil R; Kulkarni G J Microbiol Methods; 2020 Jun; 173():105920. PubMed ID: 32304720 [TBL] [Abstract][Full Text] [Related]
3. Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC. López-Amorós R; Castel S; Comas-Riu J; Vives-Rego J Cytometry; 1997 Dec; 29(4):298-305. PubMed ID: 9415412 [TBL] [Abstract][Full Text] [Related]
4. Membrane hyperpolarisation by valinomycin and its limitations for bacterial viability assessment using rhodamine 123 and flow cytometry. Porter J; Pickup R; Edwards C FEMS Microbiol Lett; 1995 Oct; 132(3):259-62. PubMed ID: 7590182 [TBL] [Abstract][Full Text] [Related]
5. Rapid and Sensitive Quantification of Bacterial Viability Using Ratiometric Fluorescence Sensing. He S; Chen Y; Wang J; Sun J; Zhang X; Chen Q Anal Chem; 2024 Jul; 96(27):11018-11025. PubMed ID: 38934709 [TBL] [Abstract][Full Text] [Related]
6. Rapid and cost-effective evaluation of bacterial viability using fluorescence spectroscopy. Ou F; McGoverin C; Swift S; Vanholsbeeck F Anal Bioanal Chem; 2019 Jun; 411(16):3653-3663. PubMed ID: 31049617 [TBL] [Abstract][Full Text] [Related]
7. [Comparative investigation by spectrofluorimetry and flow cytometry of plasma and inner mitochondrial membranes polarisation in smooth muscle cell using potential-sensitive probe DiOC6(3)]. Danylovich GV; Danylovich IuV; Gorchev VF Ukr Biokhim Zh (1999); 2011; 83(3):99-105. PubMed ID: 21888060 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of Escherichia coli viability by flow cytometry: A method for determining bacterial responses to antibiotic exposure. Boi P; Manti A; Pianetti A; Sabatini L; Sisti D; Rocchi MB; Bruscolini F; Galluzzi L; Papa S Cytometry B Clin Cytom; 2015; 88(3):149-53. PubMed ID: 25532721 [TBL] [Abstract][Full Text] [Related]
9. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Novo D; Perlmutter NG; Hunt RH; Shapiro HM Cytometry; 1999 Jan; 35(1):55-63. PubMed ID: 10554181 [TBL] [Abstract][Full Text] [Related]
10. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss. Vanhauteghem D; Janssens GP; Lauwaerts A; Sys S; Boyen F; Cox E; Meyer E PLoS One; 2013; 8(3):e60328. PubMed ID: 23544135 [TBL] [Abstract][Full Text] [Related]
11. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains. Tomasek K; Bergmiller T; Guet CC J Biotechnol; 2018 Feb; 268():40-52. PubMed ID: 29355812 [TBL] [Abstract][Full Text] [Related]
12. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes. Holoubek A; Vecer J; Sigler K J Fluoresc; 2007 Mar; 17(2):201-13. PubMed ID: 17279336 [TBL] [Abstract][Full Text] [Related]
13. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Kralj JM; Hochbaum DR; Douglass AD; Cohen AE Science; 2011 Jul; 333(6040):345-8. PubMed ID: 21764748 [TBL] [Abstract][Full Text] [Related]
14. Rapid assessment of physiological status in Escherichia coli using fluorescent probes. Porter J; Edwards C; Pickup RW J Appl Bacteriol; 1995 Oct; 79(4):399-408. PubMed ID: 7592133 [TBL] [Abstract][Full Text] [Related]
15. A ratiometric fluorescent probe for rapid and sensitive detection of biothiols in fetal bovine serum. Wang F; Feng C; Lu L; Xu Z; Zhang W Talanta; 2017 Jul; 169():149-155. PubMed ID: 28411805 [TBL] [Abstract][Full Text] [Related]
17. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay. Barizuddin S; Balakrishnan B; Stringer RC; Dweik M J Microbiol Methods; 2015 Aug; 115():27-33. PubMed ID: 26003438 [TBL] [Abstract][Full Text] [Related]
18. An easy ratiometric compensation for the extracellular Ca2+ indicator-caused fluorescence artifact. Kukkonen JP Anal Biochem; 2009 Jul; 390(2):212-4. PubMed ID: 19376081 [TBL] [Abstract][Full Text] [Related]
19. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H(+)-ATPase reconstituted into vesicles. Holoubek A; Vecer J; Opekarová M; Sigler K Biochim Biophys Acta; 2003 Jan; 1609(1):71-9. PubMed ID: 12507760 [TBL] [Abstract][Full Text] [Related]
20. Hairpin-Contained i-Motif Based Fluorescent Ratiometric Probe for High-Resolution and Sensitive Response of Small pH Variations. Ma W; Yan L; He X; Qing T; Lei Y; Qiao Z; He D; Huang K; Wang K Anal Chem; 2018 Feb; 90(3):1889-1896. PubMed ID: 29299923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]