These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30562899)

  • 41. Quantitative assessment of conjunctival microvascular circulation of the human eye.
    Shahidi M; Wanek J; Gaynes B; Wu T
    Microvasc Res; 2010 Mar; 79(2):109-13. PubMed ID: 20053367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated Assessment of Hemodynamics in the Conjunctival Microvasculature Network.
    Khansari MM; Wanek J; Felder AE; Camardo N; Shahidi M
    IEEE Trans Med Imaging; 2016 Feb; 35(2):605-11. PubMed ID: 26452274
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Increased Corneal Toricity after Long-Term Orthokeratology Lens Wear.
    Chen Z; Zhou J; Xue F; Zhou X; Qu X
    J Ophthalmol; 2018; 2018():7106028. PubMed ID: 30425855
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of microvascular network in bulbar conjunctiva by image processing.
    Chen PC; Kovalcheck SW; Zweifach BW
    Int J Microcirc Clin Exp; 1987 Aug; 6(3):245-55. PubMed ID: 3654069
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Associations Between Lid Wiper Microvascular Responses, Lens Fit, and Comfort After One Day of Contact Lens Adaptation by Neophytes.
    Jiang H; Fang M; Franklin R; Simms AG; Fadli Z; Wang J
    Eye Contact Lens; 2022 Aug; 48(8):340-346. PubMed ID: 35580543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Progress of Bulbar Conjunctival Microcirculation Alterations in the Diagnosis of Ocular Diseases.
    Sun Z; Li Y; Liu R; Ma B; Zhou Y; Duan H; Bian L; Li W; Qi H
    Dis Markers; 2022; 2022():4046809. PubMed ID: 36072898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control.
    Cho P; Cheung SW; Edwards M
    Curr Eye Res; 2005 Jan; 30(1):71-80. PubMed ID: 15875367
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Posterior corneal shape changes in myopic overnight orthokeratology.
    Yoon JH; Swarbrick HA
    Optom Vis Sci; 2013 Mar; 90(3):196-204. PubMed ID: 23422943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel approach to the study of human microcirculation: Reactivity to locally applied angiotensin II in the conjunctival microvascular bed.
    Houben AJ; Burgwinkel JP; de Leeuw PW
    J Hypertens; 2006 Nov; 24(11):2225-30. PubMed ID: 17053544
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discontinuation of orthokeratology on eyeball elongation (DOEE).
    Cho P; Cheung SW
    Cont Lens Anterior Eye; 2017 Apr; 40(2):82-87. PubMed ID: 28038841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Corneal thickness and endothelial observation for youth myopia patients fitted with ortho-k lens for seven years].
    Guo X; Xie P
    Zhonghua Yan Ke Za Zhi; 2014 Jan; 50(1):9-13. PubMed ID: 24709127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Validity of axial length measurements for monitoring myopic progression in orthokeratology.
    Cheung SW; Cho P
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1613-5. PubMed ID: 23361504
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [The long-term clinical effects of orthokeratology in high myopia children].
    Zhou J; Xie P; Wang D; Guo X; Yang L
    Zhonghua Yan Ke Za Zhi; 2015 Jul; 51(7):515-9. PubMed ID: 26310255
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Incidence of corneal pigmented arc and factors associated with its appearance in orthokeratology.
    Cho P; Cheung SW; Mountford J; Chui WS
    Ophthalmic Physiol Opt; 2005 Nov; 25(6):478-84. PubMed ID: 16343123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predictive Role of Paracentral Corneal Toricity Using Elevation Data for Treatment Zone Decentration During Orthokeratology.
    Li Z; Cui D; Long W; Hu Y; He L; Yang X
    Curr Eye Res; 2018 Sep; 43(9):1083-1089. PubMed ID: 29806506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Orthokeratology with increased compression factor (OKIC): study design and preliminary results.
    Wan K; Lau JK; Cheung SW; Cho P
    BMJ Open Ophthalmol; 2020; 5(1):e000345. PubMed ID: 32420450
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of patient compliance in orthokeratology and analysis of influencing factors: a cross-sectional study.
    Bian Z; Xu X; Chen D; Ni H
    BMC Ophthalmol; 2021 Nov; 21(1):396. PubMed ID: 34784895
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging.
    MacKenzie LE; Choudhary TR; McNaught AI; Harvey AR
    Exp Eye Res; 2016 Aug; 149():48-58. PubMed ID: 27317046
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of povidone iodine contact lens disinfecting solution on orthokeratology lens and lens case contamination and organisms in the microbiome of the conjunctiva.
    Cheung SW; Boost MV; Cho P
    Cont Lens Anterior Eye; 2021 Dec; 44(6):101412. PubMed ID: 33546963
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Orthokeratology practice in children in a university clinic in Hong Kong.
    Chan B; Cho P; Cheung SW
    Clin Exp Optom; 2008 Sep; 91(5):453-60. PubMed ID: 18355342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.