These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30562934)

  • 21. Smart hospital infrastructure: geomagnetic in-hospital medical worker tracking.
    Yamashita K; Oyama S; Otani T; Yamashita S; Furukawa T; Kobayashi D; Sato K; Sugano A; Funada C; Mori K; Ishiguro N; Shiratori Y
    J Am Med Inform Assoc; 2021 Mar; 28(3):477-486. PubMed ID: 33316057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On Indoor Localization Using WiFi, BLE, UWB, and IMU Technologies.
    Leitch SG; Ahmed QZ; Abbas WB; Hafeez M; Laziridis PI; Sureephong P; Alade T
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Situation-Aware Indoor Localization (SAIL) System Using a LF and RF Hybrid Approach.
    Park JK; Kim J; Kang SJ
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Empirical Study of the Transmission Power Setting for Bluetooth-Based Indoor Localization Mechanisms.
    Castillo-Cara M; Lovón-Melgarejo J; Bravo-Rocca G; Orozco-Barbosa L; García-Varea I
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting and Correcting for Human Obstacles in BLE Trilateration Using Artificial Intelligence.
    Naghdi S; O'Keefe K
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Learning-Based Indoor Localization Using Multi-View BLE Signal.
    Koutris A; Siozos T; Kopsinis Y; Pikrakis A; Merk T; Mahlig M; Papaharalabos S; Karlsson P
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beacon-Related Parameters of Bluetooth Low Energy: Development of a Semi-Automatic System to Study Their Impact on Indoor Positioning Systems.
    de Blasio GS; Rodríguez-Rodríguez JC; García CR; Quesada-Arencibia A
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. BLE-Based Indoor Localization: Analysis of Some Solutions for Performance Improvement.
    Milano F; da Rocha H; Laracca M; Ferrigno L; Espírito Santo A; Salvado J; Paciello V
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bluetooth 5.1: An Analysis of Direction Finding Capability for High-Precision Location Services.
    Pau G; Arena F; Gebremariam YE; You I
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34064147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Survey of 3D Indoor Localization Systems and Technologies.
    Sesyuk A; Ioannou S; Raspopoulos M
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Ensemble Filter for Indoor Positioning in a Retail Store Using Bluetooth Low Energy Beacons.
    Stavrou V; Bardaki C; Papakyriakopoulos D; Pramatari K
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Robust Indoor Positioning Method based on Bluetooth Low Energy with Separate Channel Information.
    Huang B; Liu J; Sun W; Yang F
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31404989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Hybrid Indoor Positioning System Based on Visible Light Communication and Bluetooth RSS Trilateration.
    Albraheem L; Alawad S
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mobile indoor positioning system based on iBeacon technology.
    Lin XY; Ho TW; Fang CC; Yen ZS; Yang BJ; Lai F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4970-3. PubMed ID: 26737407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems.
    Huh JH; Seo K
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29257044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive Kalman filter for indoor localization using Bluetooth Low Energy and inertial measurement unit.
    Yoon PK; Zihajehzadeh S; Bong-Soo Kang ; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():825-8. PubMed ID: 26736389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Indoor environment dataset based on RSSI collected with bluetooth devices.
    Assayag Y; Oliveira H; Lima M; Junior J; Preste M; Guimarães L; Souto E
    Data Brief; 2024 Aug; 55():110692. PubMed ID: 39071959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fingerprint Feature Extraction for Indoor Localization.
    Jiang JR; Subakti H; Liang HS
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on an Indoor Positioning System for Harsh Environments Based on Wi-Fi and Bluetooth Low Energy.
    de Blasio G; Quesada-Arencibia A; García CR; Molina-Gil JM; Caballero-Gil C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bluetooth Low Energy Indoor Positioning System with Channel Diversity, Weighted Trilateration and Kalman Filtering.
    Cantón Paterna V; Calveras Augé A; Paradells Aspas J; Pérez Bullones MA
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29258195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.