These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 30562935)
41. Mobility of REE from a hyperacid brine to secondary minerals precipitated in a volcanic hydrothermal system: Kawah Ijen crater lake (Java, Indonesia). Inguaggiato C; Pappaterra S; Peiffer L; Apollaro C; Brusca L; De Rosa R; Rouwet D; Caudron C; Suparjan Sci Total Environ; 2020 Oct; 740():140133. PubMed ID: 32563880 [TBL] [Abstract][Full Text] [Related]
42. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Vogel MB; Des Marais DJ; Turk KA; Parenteau MN; Jahnke LL; Kubo MD Astrobiology; 2009 Nov; 9(9):875-93. PubMed ID: 19968464 [TBL] [Abstract][Full Text] [Related]
43. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec). Thomassot E; O'Neil J; Francis D; Cartigny P; Wing BA Proc Natl Acad Sci U S A; 2015 Jan; 112(3):707-12. PubMed ID: 25561552 [TBL] [Abstract][Full Text] [Related]
44. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence. Wong ML; Charnay BD; Gao P; Yung YL; Russell MJ Astrobiology; 2017 Oct; 17(10):975-983. PubMed ID: 29023147 [TBL] [Abstract][Full Text] [Related]
45. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy. Wang L; Putnis CV Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501 [TBL] [Abstract][Full Text] [Related]
46. Predicting new mineral occurrences and planetary analog environments via mineral association analysis. Morrison SM; Prabhu A; Eleish A; Hazen RM; Golden JJ; Downs RT; Perry S; Burns PC; Ralph J; Fox P PNAS Nexus; 2023 May; 2(5):pgad110. PubMed ID: 37200799 [TBL] [Abstract][Full Text] [Related]
47. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Caro G; Bourdon B; Wood BJ; Corgne A Nature; 2005 Jul; 436(7048):246-9. PubMed ID: 16015327 [TBL] [Abstract][Full Text] [Related]
48. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of Brazilian coal waste fire. Civeira MS; Pinheiro RN; Gredilla A; de Vallejuelo SF; Oliveira ML; Ramos CG; Taffarel SR; Kautzmann RM; Madariaga JM; Silva LF Sci Total Environ; 2016 Feb; 544():892-900. PubMed ID: 26706762 [TBL] [Abstract][Full Text] [Related]
49. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid. Lederer MR; Staniec AR; Coates Fuentes ZL; Van Ry DA; Hinrichs RZ J Phys Chem A; 2016 Dec; 120(48):9545-9556. PubMed ID: 27933906 [TBL] [Abstract][Full Text] [Related]
50. Chrysotile: its occurrence and properties as variables controlling biological effects. Langer AM; Nolan RP Ann Occup Hyg; 1994 Aug; 38(4):427-51, 407. PubMed ID: 7978965 [TBL] [Abstract][Full Text] [Related]
51. Crystallization of silicon dioxide and compositional evolution of the Earth's core. Hirose K; Morard G; Sinmyo R; Umemoto K; Hernlund J; Helffrich G; Labrosse S Nature; 2017 Mar; 543(7643):99-102. PubMed ID: 28225759 [TBL] [Abstract][Full Text] [Related]
52. Shock effects in certain rock-forming minerals. Chao EC Science; 1967 Apr; 156(3772):192-202. PubMed ID: 17741139 [TBL] [Abstract][Full Text] [Related]
53. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands. ThomasArrigo LK; Kaegi R; Kretzschmar R Environ Sci Technol; 2019 Dec; 53(23):13636-13647. PubMed ID: 31718167 [TBL] [Abstract][Full Text] [Related]
54. Plausible Sources of Membrane-Forming Fatty Acids on the Early Earth: A Review of the Literature and an Estimation of Amounts. Cohen ZR; Todd ZR; Wogan N; Black RA; Keller SL; Catling DC ACS Earth Space Chem; 2023 Jan; 7(1):11-27. PubMed ID: 36704178 [TBL] [Abstract][Full Text] [Related]
56. Effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide challenge in midlactation dairy cows. Yasui T; Ehrhardt RM; Bowman GR; Vázquez-Añon M; Richards JD; Atwell CA; Overton TR Animal; 2019 May; 13(5):1000-1008. PubMed ID: 30322418 [TBL] [Abstract][Full Text] [Related]
57. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation. Van Groeningen N; ThomasArrigo LK; Byrne JM; Kappler A; Christl I; Kretzschmar R Environ Sci Process Impacts; 2020 Jun; 22(6):1355-1367. PubMed ID: 32374339 [TBL] [Abstract][Full Text] [Related]
58. Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: a combined solution chemistry and X-ray powder diffraction study. Ryan PC; Hillier S; Wall AJ Sci Total Environ; 2008 Dec; 407(1):603-14. PubMed ID: 18951614 [TBL] [Abstract][Full Text] [Related]
59. Current approaches for mitigating acid mine drainage. Sahoo PK; Kim K; Equeenuddin SM; Powell MA Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128 [TBL] [Abstract][Full Text] [Related]
60. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Frost DJ; Liebske C; Langenhorst F; McCammon CA; Trønnes RG; Rubie DC Nature; 2004 Mar; 428(6981):409-12. PubMed ID: 15042086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]