These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30562969)

  • 1. A MoS₂ Nanoflakes-Based LC Wireless Passive Humidity Sensor.
    Su S; Lv W; Zhang T; Tan Q; Zhang W; Xiong J
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30562969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GO/CNT-OH/Nafion Nanocomposite Humidity Sensor Based on the LC Wireless Method.
    Wang C; Jiao C; Wang M; Pan J; Wang Q
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless Passive LC Temperature and Strain Dual-Parameter Sensor.
    Wang Y; Tan Q; Zhang L; Lin B; Li M; Fan Z
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Engineering on Polyimide-Silver Films in Low-Cost, Flexible Humidity Sensors.
    Luo M; Liu Z; Wang Q; Liu R; Xu Y; Wang K; Shi X; Ye S
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16621-16630. PubMed ID: 35360903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Ceramic Passive Wireless Temperature Sensor Realized by Tin-Doped Indium Oxide (ITO) Electrodes for Harsh Environment Applications.
    Varadharajan Idhaiam KS; Caswell JA; Pozo PD; Sabolsky K; Sierros KA; Reynolds DS; Sabolsky EM
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance humidity sensor using Schottky-contacted SnS nanoflakes for noncontact healthcare monitoring.
    Tang H; Li Y; Ye H; Hu F; Gao C; Tao L; Tu T; Gou G; Chen X; Fan X; Ren T; Zhang G
    Nanotechnology; 2020 Jan; 31(5):055501. PubMed ID: 31484166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An LC Wireless Passive Pressure Sensor Based on Single-Crystal MgO MEMS Processing Technique for High Temperature Applications.
    Jia P; Liu J; Qian J; Ren Q; An G; Xiong J
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.
    Zhou S; Deng F; Yu L; Li B; Wu X; Yin B
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27657070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pt decorated MoS
    Burman D; Santra S; Pramanik P; Guha PK
    Nanotechnology; 2018 Mar; 29(11):115504. PubMed ID: 29408801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.
    Dennis JO; Ahmed AY; Khir MH
    Sensors (Basel); 2015 Jul; 15(7):16674-87. PubMed ID: 26184204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Sensitivity and Low-Hysteresis Porous MIMType Capacitive Humidity Sensor Using Functional Polymer Mixed with TiO2 Microparticles.
    Liu MQ; Wang C; Kim NY
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28157167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.
    Li C; Tan Q; Xue C; Zhang W; Li Y; Xiong J
    Sensors (Basel); 2014 Dec; 14(12):23337-47. PubMed ID: 25490593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing.
    Zhang D; Sun Y; Li P; Zhang Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14142-9. PubMed ID: 27192399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of co-polyaniline nanocomposite thin films as humidity sensor.
    Fuke MV; Vijayan A; Kulkarni M; Hawaldar R; Aiyer RC
    Talanta; 2008 Sep; 76(5):1035-40. PubMed ID: 18761151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-Friendly Textile-Based Wearable Humidity Sensor with Multinode Wireless Connectivity for Healthcare Applications.
    Beniwal A; Khandelwal G; Mukherjee R; Mulvihill DM; Li C
    ACS Appl Bio Mater; 2024 Jul; ():. PubMed ID: 38963128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Fabrication of ZnO Waveguide Layer for Love Wave Humidity Sensor Based on Magnetron Sputtering.
    Wen C; Niu T; Ma Y; Gao N; Ru F
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal Growth and Humidity-Dependent Electrical Properties of Molybdenum Disulphide Nanosheets.
    Shelke NT; Karle SC; Karche BR
    J Nanosci Nanotechnol; 2019 Aug; 19(8):5158-5166. PubMed ID: 30913830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Highly Sensitive and Stable rGO:MoS
    Adib MR; Lee Y; Kondalkar VV; Kim S; Lee K
    ACS Sens; 2021 Mar; 6(3):1012-1021. PubMed ID: 33730484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Highly Sensitive Humidity Sensor Based on a Piezoelectric Micromachined Ultrasonic Transducer Array Functionalized with Graphene Oxide Thin Film.
    Sun C; Shi Q; Yazici MS; Lee C; Liu Y
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-compatible organic humidity sensor based on natural inner egg shell membrane with multilayer crosslinked fiber structure.
    Khan MU; Hassan G; Bae J
    Sci Rep; 2019 Apr; 9(1):5824. PubMed ID: 30967610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.