These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30563012)

  • 21. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
    Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H
    Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and Analysis of the Two-Dimensional Axisymmetric Acoustofluidic Fields in the Probe-Type and Substrate-Type Ultrasonic Micro/Nano Manipulation Systems.
    Liu P; Tang Q; Su S; Hu J; Yu Y
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31878198
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A numerical study of droplet dynamic behaviors on a micro-structured surface using a three dimensional color-gradient lattice Boltzmann model.
    Cheng Z; Ba Y; Sun J; Wang C; Cai S; Fu X
    Soft Matter; 2018 Jan; 14(5):837-847. PubMed ID: 29308826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PIV quantification of the flow induced by an ultrasonic horn and numerical modeling of the flow and related processing times.
    Schenker MC; Pourquié MJ; Eskin DG; Boersma BJ
    Ultrason Sonochem; 2013 Jan; 20(1):502-9. PubMed ID: 22658635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical investigation of indoor particulate contaminant transport using the Eulerian-Eulerian and Eulerian-Lagrangian two-phase flow models.
    Yan Y; Li X; Ito K
    Exp Comput Multiph Flow; 2020; 2(1):31-40. PubMed ID: 32289121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions.
    Ai Y; Zeng Z; Qian S
    J Colloid Interface Sci; 2014 Mar; 417():72-9. PubMed ID: 24407661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial stir bars: Light-activated rotation of tethered bacterial cells to enhance mixing in stagnant fluids.
    Gurung JP; Navvab Kashani M; de Silva CM; Baker MAB
    Biomicrofluidics; 2023 Mar; 17(2):024108. PubMed ID: 37124628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of steady streaming for a particle manipulation system.
    Amit R; Abadi A; Kosa G
    Biomed Microdevices; 2016 Apr; 18(2):39. PubMed ID: 27108449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical study of the flow around a cylinder using multi-particle collision dynamics.
    Lamura A; Gompper G
    Eur Phys J E Soft Matter; 2002 Dec; 9(5):477-85. PubMed ID: 15011096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative numerical-experimental analysis of the universal impact of arbitrary perturbations on transport in three-dimensional unsteady flows.
    Wu F; Speetjens MF; Vainchtein DL; Trieling RR; Clercx HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063002. PubMed ID: 25615182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Dimensional Vibration Model of Cylindrical Shells via Carrera Unified Formulation.
    Liang W; Liu T; Li C; Wang Q
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.
    Umeyama M
    Philos Trans A Math Phys Eng Sci; 2012 Apr; 370(1964):1687-702. PubMed ID: 22393117
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eliminating background noise effect in micro-resolution particle image velocimetry.
    Tian JD; Qiu HH
    Appl Opt; 2002 Nov; 41(32):6849-57. PubMed ID: 12440539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice Boltzmann method for oscillatory Stokes flow with applications to micro- and nanodevices.
    Shi Y; Sader JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036706. PubMed ID: 20365903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement.
    Shen F; Li Y; Liu Z; Li X
    Microfluid Nanofluidics; 2017 Apr; 21(4):. PubMed ID: 28890680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.
    Nama N; Huang TJ; Costanzo F
    J Fluid Mech; 2017 Aug; 825():600-630. PubMed ID: 29051631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical and experimental investigations of human swimming motions.
    Takagi H; Nakashima M; Sato Y; Matsuuchi K; Sanders RH
    J Sports Sci; 2016 Aug; 34(16):1564-80. PubMed ID: 26699925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.