These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30563045)

  • 1. Variability Predictions for the Next Technology Generations of
    Lee J; Badami O; Carrillo-Nuñez H; Berrada S; Medina-Bailon C; Dutta T; Adamu-Lema F; Georgiev VP; Asenov A
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30563045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multi-Method Simulation Toolbox to Study Performance and Variability of Nanowire FETs.
    Seoane N; Nagy D; Indalecio G; Espiñeira G; Kalna K; García-Loureiro A
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31357496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryogenic Transport Characteristics of P-Type Gate-All-Around Silicon Nanowire MOSFETs.
    Gu J; Zhang Q; Wu Z; Yao J; Zhang Z; Zhu X; Wang G; Li J; Zhang Y; Cai Y; Xu R; Xu G; Xu Q; Yin H; Luo J; Wang W; Ye T
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33530292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum simulation investigation of work-function variation in nanowire tunnel FETs.
    Guan Y; Carrillo-Nuñez H; Georgiev VP; Asenov A; Liang F; Li Z; Chen H
    Nanotechnology; 2021 Apr; 32(15):150001. PubMed ID: 33285530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum mechanical simulation of hole transport in p-type Si Schottky barrier MOSFETs.
    Choi W; Shin M
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5861-4. PubMed ID: 22121621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical transport of bottom-up grown single-crystal Si(1-x)Ge(x) nanowire.
    Yang WF; Lee SJ; Liang GC; Whang SJ; Kwong DL
    Nanotechnology; 2008 Jun; 19(22):225203. PubMed ID: 21825755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly gate-tuneable Rashba spin-orbit interaction in a gate-all-around InAs nanowire metal-oxide-semiconductor field-effect transistor.
    Takase K; Ashikawa Y; Zhang G; Tateno K; Sasaki S
    Sci Rep; 2017 Apr; 7(1):930. PubMed ID: 28424473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Unique Approach to Generate Self-Aligned SiO2/Ge/SiO2/SiGe Gate-Stacking Heterostructures in a Single Fabrication Step.
    Lai WT; Yang KC; Hsu TC; Liao PH; George T; Li PW
    Nanoscale Res Lett; 2015; 10():224. PubMed ID: 26019699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unlocking the Origin of Superior Performance of a Si-Ge Core-Shell Nanowire Quantum Dot Field Effect Transistor.
    Dhungana KB; Jaishi M; Pati R
    Nano Lett; 2016 Jul; 16(7):3995-4000. PubMed ID: 27280769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Demonstration of Novel Vertical Gate-All-Around Field-Effect-Transistors Featured by Self-Aligned and Replaced High-κ Metal Gates.
    Li C; Zhu H; Zhang Y; Wang Q; Yin X; Li J; Wang G; Kong Z; Ai X; Xie L; Liu Y; Li Y; Huang W; Yan Z; Xiao Z; Radamson HH; Li J; Wang W
    Nano Lett; 2021 Jun; 21(11):4730-4737. PubMed ID: 34038143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random dopant fluctuations and statistical variability in n-channel junctionless FETs.
    Akhavan ND; Umana-Membreno GA; Gu R; Antoszewski J; Faraone L
    Nanotechnology; 2018 Jan; 29(2):025203. PubMed ID: 29176060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Number Fluctuation and Position Variation of Channel Dopants and Gate Metal Grains on Tunneling Field-Effect Transistors (TFETs).
    Choi KM; Kim SK; Choi WY
    J Nanosci Nanotechnol; 2016 May; 16(5):5255-8. PubMed ID: 27483910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transport in multigate In x Ga 1-x as nanowire FETs: from diffusive to ballistic regimes at room temperature.
    Thathachary AV; Agrawal N; Liu L; Datta S
    Nano Lett; 2014 Feb; 14(2):626-33. PubMed ID: 24382089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs.
    Rogdakis K; Poli S; Bano E; Zekentes K; Pala MG
    Nanotechnology; 2009 Jul; 20(29):295202. PubMed ID: 19567960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors.
    Tang J; Wang CY; Xiu F; Lang M; Chu LW; Tsai CJ; Chueh YL; Chen LJ; Wang KL
    ACS Nano; 2011 Jul; 5(7):6008-15. PubMed ID: 21699197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Electrostatics through Digital Etch Schemes in Vertical GaSb Nanowire p-MOSFETs on Si.
    Zhu Z; Jönsson A; Liu YP; Svensson J; Timm R; Wernersson LE
    ACS Appl Electron Mater; 2022 Jan; 4(1):531-538. PubMed ID: 35098137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High electron mobility InAs nanowire field-effect transistors.
    Dayeh SA; Aplin DP; Zhou X; Yu PK; Yu ET; Wang D
    Small; 2007 Feb; 3(2):326-32. PubMed ID: 17199246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catching the electron in action in real space inside a Ge-Si core-shell nanowire transistor.
    Jaishi M; Pati R
    Nanoscale; 2017 Sep; 9(36):13425-13431. PubMed ID: 28880035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Monolayer Blue Phosphorene Double-Gate MOSFETs from the First Principles.
    Wang J; Cai Q; Lei J; Yang G; Xue J; Chen D; Liu B; Lu H; Zhang R; Zheng Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):20956-20964. PubMed ID: 31046216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.