These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30563081)

  • 1. Anisotropic Compressive Behavior of Functionally Density Graded Aluminum Foam Prepared by Controlled Melt Foaming Process.
    Zhang B; Hu S; Fan Z
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent.
    Hangai Y; Utsunomiya T; Kuwazuru O; Kitahara S; Yoshikawa N
    Materials (Basel); 2015 Oct; 8(10):7161-7168. PubMed ID: 28793626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Compressive Behaviors of Two-Layer Graded Aluminum Foams under Blast Loading.
    Liang M; Li X; Lin Y; Zhang K; Lu F
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31058872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive Behavior of Aluminum Microfibers Reinforced Semi-Rigid Polyurethane Foams.
    Linul E; Vălean C; Linul PA
    Polymers (Basel); 2018 Nov; 10(12):. PubMed ID: 30961223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic Compressive Behavior of Metallic Foams under Extreme Temperature Conditions.
    Khezrzadeh O; Mirzaee O; Emadoddin E; Linul E
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on Quasi-Static Axial Compression Performance and Energy Absorption of Aluminum Foam-Filled Steel Tubes.
    Wang Z; Shao J
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Mechanical Behavior of Density-Graded Elastomeric Foam Structures via Interlayer Properties.
    Uddin KZ; Anni IA; Youssef G; Koohbor B
    ACS Omega; 2022 Oct; 7(42):37189-37200. PubMed ID: 36312340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling Effect of Porosity and Cell Size on the Deformation Behavior of Al Alloy Foam under Quasi-Static Compression.
    Yang D; Wang H; Guo S; Chen J; Xu Y; Lei D; Sun J; Wang L; Jiang J; Ma A
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30901939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Modeling and Experimental Behavior of Closed-Cell Aluminum Foam Fabricated by the Gas Blowing Method under Compressive Loading.
    Sharma V; Zivic F; Grujovic N; Babcsan N; Babcsan J
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Experimental and Computational Study of the High-Velocity Impact of Low-Density Aluminum Foam.
    Borovinšek M; Vesenjak M; Hokamoto K; Ren Z
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32326258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical characteristics of an aluminum foam winding CFRP composite structure under axial compression.
    Zhou H; Jiang Y; Yang G; Xie S
    Heliyon; 2024 Jun; 10(11):e31658. PubMed ID: 38828340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties and failure deformation mechanisms of yak horn under quasi-static compression and dynamic impact.
    Liu S; Xu S; Song J; Zhou J; Xu L; Li X; Zou M
    J Mech Behav Biomed Mater; 2020 Jul; 107():103753. PubMed ID: 32364949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Properties and Constitutive Model Applied to the High-Speed Impact of Aluminum Foam That Considers Its Meso-Structural Parameters.
    Guo Q; Li W; Yao W; Wang X; Huang C
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Energy Absorption Capabilities of Polyethylene Foam under Impact Deformation.
    Yang B; Zuo Y; Chang Z
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, Processing, Properties, and Applications of Closed-Cell Aluminum Foams: A Review.
    Fu W; Li Y
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Effects on the Compressive Behaviors of Closed-Cell Copper Foams Prepared by Powder Metallurgy.
    Han B; Li Y; Wang Z; Gu X; Zhang Q
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads.
    Ashab ASMA; Ruan D; Lu G; Bhuiyan AA
    Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compression-Softening Bond Model for Non-Water Reactive Foaming Polyurethane Grouting Material.
    Dong B; Du M; Fang H; Wang F; Zhang H; Zhu L
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-Static Mechanical Response of Density-Graded Polyurea Elastomeric Foams.
    Smeets M; Koohbor B; Youssef G
    ACS Appl Polym Mater; 2023 Apr; 5(4):2840-2851. PubMed ID: 37090421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Absorption Behavior of Al-SiC-Graphene Composite Foam under a High Strain Rate.
    Das S; Rajak DK; Khanna S; Mondal DP
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.