These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 30563335)
1. RNA-Seq Reveals Flavonoid Biosynthesis-Related Genes in Pecan ( Carya illinoinensis) Kernels. Zhang C; Yao X; Ren H; Chang J; Wang K J Agric Food Chem; 2019 Jan; 67(1):148-158. PubMed ID: 30563335 [TBL] [Abstract][Full Text] [Related]
2. Isolation and Characterization of Three Zhang C; Yao X; Ren H; Wang K; Chang J Biomolecules; 2019 Jun; 9(6):. PubMed ID: 31216753 [TBL] [Abstract][Full Text] [Related]
3. RNA-Seq Analysis of Developing Pecan (Carya illinoinensis) Embryos Reveals Parallel Expression Patterns among Allergen and Lipid Metabolism Genes. Mattison CP; Rai R; Settlage RE; Hinchliffe DJ; Madison C; Bland JM; Brashear S; Graham CJ; Tarver MR; Florane C; Bechtel PJ J Agric Food Chem; 2017 Feb; 65(7):1443-1455. PubMed ID: 28121438 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (Carya illinoinensis). Huang R; Huang Y; Sun Z; Huang J; Wang Z J Agric Food Chem; 2017 May; 65(20):4223-4236. PubMed ID: 28459558 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis) Kernel Ripening and Its Phenolics Profiles. Jia X; Luo H; Xu M; Zhai M; Guo Z; Qiao Y; Wang L Molecules; 2018 Feb; 23(2):. PubMed ID: 29462910 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism. Xu Z; Ni J; Shah FA; Wang Q; Wang Z; Wu L; Fu S PLoS One; 2018; 13(4):e0195913. PubMed ID: 29694395 [TBL] [Abstract][Full Text] [Related]
7. Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of Sun L; Yu D; Wu Z; Wang C; Yu L; Wei A; Wang D J Agric Food Chem; 2019 Dec; 67(48):13258-13268. PubMed ID: 31714769 [No Abstract] [Full Text] [Related]
8. Comparative Transcriptome Analysis Reveals Differential Regulation of Flavonoids Biosynthesis Between Kernels of Two Pecan Cultivars. Zhang C; Ren H; Yao X; Wang K; Chang J Front Plant Sci; 2022; 13():804968. PubMed ID: 35283902 [TBL] [Abstract][Full Text] [Related]
10. Variation in pigments in pecan testa during kernel development and storage. Zhang C; Wang K; Ren H; Chang J; Yao X Food Chem; 2024 Apr; 438():137989. PubMed ID: 37992607 [TBL] [Abstract][Full Text] [Related]
11. Phenolic content and anti-hyperglycemic activity of pecan cultivars from Egypt. El Hawary SS; Saad S; El Halawany AM; Ali ZY; El Bishbishy M Pharm Biol; 2016; 54(5):788-98. PubMed ID: 26450069 [TBL] [Abstract][Full Text] [Related]
12. Analysis of pecan nut (Carya illinoinensis) unsaponifiable fraction. Effect of ripening stage on phytosterols and phytostanols composition. Bouali I; Trabelsi H; Herchi W; Martine L; Albouchi A; Bouzaien G; Sifi S; Boukhchina S; Berdeaux O Food Chem; 2014 Dec; 164():309-16. PubMed ID: 24996339 [TBL] [Abstract][Full Text] [Related]
13. Proteomic and Transcriptomic Analyses Provide New Insights into the Mechanism Underlying Lipid Deterioration in Pecan Kernels during Storage. Jia X; Xu M; Tan W; Wang Z; Guo Z; Yang X; Liu C J Agric Food Chem; 2024 May; 72(17):10127-10137. PubMed ID: 38651754 [TBL] [Abstract][Full Text] [Related]
14. Lipidomic and comparative transcriptomic analysis of fatty acid synthesis pathway in Carya illinoinensis embryo. Lyu YZ; Jiang H; Sun HN; Yang Y; Chao Y; Huang LB; Dong XY Tree Physiol; 2023 Sep; 43(9):1675-1690. PubMed ID: 37171624 [TBL] [Abstract][Full Text] [Related]
15. The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. Huang Y; Xiao L; Zhang Z; Zhang R; Wang Z; Huang C; Huang R; Luan Y; Fan T; Wang J; Shen C; Zhang S; Wang X; Randall J; Zheng B; Wu J; Zhang Q; Xia G; Xu C; Chen M; Zhang L; Jiang W; Gao L; Chen Z; Leslie CA; Grauke LJ; Huang J Gigascience; 2019 May; 8(5):. PubMed ID: 31049561 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic diversity and population structure of Pecan (Carya illinoinensis) collections reveals geographic patterns. Wang X; Stein L; Black M; Kubenka K; Randall J; Ding C Sci Rep; 2024 Aug; 14(1):18592. PubMed ID: 39127859 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic Analysis to Unravel Potential Pathways and Genes Involved in Pecan ( Chen Y; Zhang S; Zhao Y; Mo Z; Wang W; Zhu C Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232919 [TBL] [Abstract][Full Text] [Related]
18. CcMYB12 Positively Regulates Flavonoid Accumulation during Fruit Development in Wang Y; Ye H; Wang K; Huang C; Si X; Wang J; Xu Y; Huang Y; Huang J; Li Y Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555261 [TBL] [Abstract][Full Text] [Related]
19. Aqueous extract from pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell show activity against breast cancer cell line MCF-7 and Ehrlich ascites tumor in Balb-C mice. Hilbig J; Policarpi PB; Grinevicius VMAS; Mota NSRS; Toaldo IM; Luiz MTB; Pedrosa RC; Block JM J Ethnopharmacol; 2018 Jan; 211():256-266. PubMed ID: 28807853 [TBL] [Abstract][Full Text] [Related]
20. Insight into the CBL and CIPK gene families in pecan (Carya illinoinensis): identification, evolution and expression patterns in drought response. Zhu K; Fan P; Liu H; Tan P; Ma W; Mo Z; Zhao J; Chu G; Peng F BMC Plant Biol; 2022 Apr; 22(1):221. PubMed ID: 35484502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]