BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30563792)

  • 1. Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: A greener and scalable process.
    Jeevan Kumar SP; Banerjee R
    Ultrason Sonochem; 2019 Apr; 52():25-32. PubMed ID: 30563792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonication assisted lipid extraction from oleaginous microorganisms.
    Zhang X; Yan S; Tyagi RD; Drogui P; Surampalli RY
    Bioresour Technol; 2014 Apr; 158():253-61. PubMed ID: 24607462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production.
    Patel A; Arora N; Pruthi V; Pruthi PA
    Ultrason Sonochem; 2019 Mar; 51():504-516. PubMed ID: 30082251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer.
    Ellison CR; Overa S; Boldor D
    Ultrason Sonochem; 2019 Mar; 51():496-503. PubMed ID: 29793838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.
    Huang WC; Park CW; Kim JD
    Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of lipid extraction from Salvinia molesta for biodiesel production using RSM and its FAME analysis.
    Mubarak M; Shaija A; Suchithra TV
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14047-55. PubMed ID: 27044288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass.
    Yellapu SK; Kaur R; Tyagi RD
    Bioresour Technol; 2017 Jan; 224():365-372. PubMed ID: 27866805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: Oil yield, fatty acid profile, fuel properties.
    Khot M; Ghosh D
    J Basic Microbiol; 2017 Apr; 57(4):345-352. PubMed ID: 28155998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.
    Yellapu SK; Bezawada J; Kaur R; Kuttiraja M; Tyagi RD
    Bioresour Technol; 2016 Oct; 218():667-73. PubMed ID: 27416517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.
    Hussain J; Liu Y; Lopes WA; Druzian JI; Souza CO; Carvalho GC; Nascimento IA; Liao W
    Appl Biochem Biotechnol; 2015 Mar; 175(6):3048-57. PubMed ID: 25588528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-Assisted Brine Extraction for Enhancement of the Quantity and Quality of Lipid Production from Microalgae
    Zghaibi N; Omar R; Kamal SMM; Biak DRA; Harun R
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31590304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative assessment of various lipid extraction protocols and optimization of transesterification process for microalgal biodiesel production.
    Mandal S; Patnaik R; Singh AK; Mallick N
    Environ Technol; 2013; 34(13-16):2009-18. PubMed ID: 24350454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.
    Navarro López E; Robles Medina A; González Moreno PA; Esteban Cerdán L; Molina Grima E
    Bioresour Technol; 2016 Sep; 216():904-13. PubMed ID: 27323242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass.
    dos Santos RR; Moreira DM; Kunigami CN; Aranda DA; Teixeira CM
    Ultrason Sonochem; 2015 Jan; 22():95-9. PubMed ID: 24910443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manothermosonication as a useful tool for lipid extraction from oleaginous microorganisms.
    Meullemiestre A; Breil C; Abert-Vian M; Chemat F
    Ultrason Sonochem; 2017 Jul; 37():216-221. PubMed ID: 28427626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of oleaginous yeast Trichosporon sp., for conversion of sugarcane bagasse hydrolysate into biodiesel.
    Brar KK; Sarma AK; Aslam M; Polikarpov I; Chadha BS
    Bioresour Technol; 2017 Oct; 242():161-168. PubMed ID: 28438358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation.
    Zhu LY; Zong MH; Wu H
    Bioresour Technol; 2008 Nov; 99(16):7881-5. PubMed ID: 18394882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic-assisted reactive-extraction is a fast and easy method for biodiesel production from Jatropha curcas oilseeds.
    Kumar G
    Ultrason Sonochem; 2017 Jul; 37():634-639. PubMed ID: 28427676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.
    Jo YJ; Lee OK; Lee EY
    Bioresour Technol; 2014 Apr; 158():105-10. PubMed ID: 24583221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.