BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30564098)

  • 1. Discordant Responses to MAPK Pathway Stimulation Include Axonal Growths in Adult
    Mecklenburg KL; Weghorst FP; Freed SA; O'Tousa JE
    Front Mol Neurosci; 2018; 11():441. PubMed ID: 30564098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SkpA restrains synaptic terminal growth during development and promotes axonal degeneration following injury.
    Brace EJ; Wu C; Valakh V; DiAntonio A
    J Neurosci; 2014 Jun; 34(25):8398-410. PubMed ID: 24948796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling.
    Klinedinst S; Wang X; Xiong X; Haenfler JM; Collins CA
    J Neurosci; 2013 Jul; 33(31):12764-78. PubMed ID: 23904612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rab11 suppresses neuronal stress signaling by localizing Dual leucine zipper kinase to axon terminals for protein turnover.
    Kim S; Quagraine Y; Singh M; Kim JH
    bioRxiv; 2024 Jan; ():. PubMed ID: 37131782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wallenda/DLK protein levels are temporally downregulated by Tramtrack69 to allow R7 growth cones to become stationary boutons.
    Feoktistov AI; Herman TG
    Development; 2016 Aug; 143(16):2983-93. PubMed ID: 27402706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK.
    Hao Y; Frey E; Yoon C; Wong H; Nestorovski D; Holzman LB; Giger RJ; DiAntonio A; Collins C
    Elife; 2016 Jun; 5():. PubMed ID: 27268300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury.
    Xiong X; Wang X; Ewanek R; Bhat P; Diantonio A; Collins CA
    J Cell Biol; 2010 Oct; 191(1):211-23. PubMed ID: 20921142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Leucine Zipper Kinase Regulates Dscam Expression through a Noncanonical Function of the Cytoplasmic Poly(A)-Binding Protein.
    Singh M; Ye B; Kim JH
    J Neurosci; 2022 Aug; 42(31):6007-6019. PubMed ID: 35764381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade.
    Xiong X; Collins CA
    J Neurosci; 2012 Jan; 32(2):610-5. PubMed ID: 22238096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104.
    Li J; Zhang YV; Asghari Adib E; Stanchev DT; Xiong X; Klinedinst S; Soppina P; Jahn TR; Hume RI; Rasse TM; Collins CA
    Elife; 2017 Sep; 6():. PubMed ID: 28925357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexpression of spectrally distinct rhodopsins in Aedes aegypti R7 photoreceptors.
    Hu X; Whaley MA; Stein MM; Mitchell BE; O'Tousa JE
    PLoS One; 2011; 6(8):e23121. PubMed ID: 21858005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of Dehydrodolichyl Diphosphate Synthase in the
    Brandwine T; Ifrah R; Bialistoky T; Zaguri R; Rhodes-Mordov E; Mizrahi-Meissonnier L; Sharon D; Katanaev VL; Gerlitz O; Minke B
    Front Mol Neurosci; 2021; 14():693967. PubMed ID: 34290587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Quantitative Model of Sporadic Axonal Degeneration in the
    Richard M; Doubková K; Nitta Y; Kawai H; Sugie A; Tavosanis G
    J Neurosci; 2022 Jun; 42(24):4937-4952. PubMed ID: 35534228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degeneration of photoreceptors in rhodopsin mutants of Drosophila.
    Leonard DS; Bowman VD; Ready DF; Pak WL
    J Neurobiol; 1992 Aug; 23(6):605-26. PubMed ID: 1431838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wallenda regulates JNK-mediated cell death in Drosophila.
    Ma X; Xu W; Zhang D; Yang Y; Li W; Xue L
    Cell Death Dis; 2015 May; 6(5):e1737. PubMed ID: 25950467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Drosophila DOCK family protein sponge is involved in differentiation of R7 photoreceptor cells.
    Eguchi K; Yoshioka Y; Yoshida H; Morishita K; Miyata S; Hiai H; Yamaguchi M
    Exp Cell Res; 2013 Aug; 319(14):2179-95. PubMed ID: 23747680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Drosophila rhodopsins during photoreceptor cell differentiation: insights into R7 and R8 cell subtype commitment.
    Earl JB; Britt SG
    Gene Expr Patterns; 2006 Oct; 6(7):687-94. PubMed ID: 16495161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step process for photoreceptor formation in Drosophila.
    Mollereau B; Dominguez M; Webel R; Colley NJ; Keung B; de Celis JF; Desplan C
    Nature; 2001 Aug; 412(6850):911-3. PubMed ID: 11528479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wallenda-Nmo Axis Regulates Growth via Hippo Signaling.
    Wang X; Liang H; Xu W; Ma X
    Front Cell Dev Biol; 2021; 9():658288. PubMed ID: 33937258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of Na/K-ATPase in developing and adult Drosophila melanogaster photoreceptors.
    Yasuhara JC; Baumann O; Takeyasu K
    Cell Tissue Res; 2000 May; 300(2):239-49. PubMed ID: 10867820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.