These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths. Badugu R; Mao J; Blair S; Zhang D; Descrovi E; Angelini A; Huo Y; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(50):28727-28734. PubMed ID: 28725334 [TBL] [Abstract][Full Text] [Related]
6. Bloch Surface Waves in Open Fabry-Perot Microcavities. Marcucci N; Guo TL; Pélisset S; Roussey M; Grosjean T; Descrovi E Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984916 [TBL] [Abstract][Full Text] [Related]
7. Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors. Gonzalez-Valencia E; Herrera RA; Torres P Opt Express; 2019 Mar; 27(6):8236-8245. PubMed ID: 31052645 [TBL] [Abstract][Full Text] [Related]
8. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber. Gonzalez-Valencia E; Del Villar I; Torres P Opt Lett; 2020 May; 45(9):2547-2550. PubMed ID: 32356813 [TBL] [Abstract][Full Text] [Related]
9. Refractive index sensor based on graphene-coated photonic surface-wave resonance. Yang Q; Qin L; Cao G; Zhang C; Li X Opt Lett; 2018 Feb; 43(4):639-642. PubMed ID: 29444041 [TBL] [Abstract][Full Text] [Related]
11. Novel Bloch wave excitation platform based on few-layer photonic crystal deposited on D-shaped optical fiber. Gonzalez-Valencia E; Villar ID; Torres P Sci Rep; 2021 May; 11(1):11266. PubMed ID: 34050199 [TBL] [Abstract][Full Text] [Related]
12. Spectral Characterization of Mid-Infrared Bloch Surface Waves Excited on a Truncated 1D Photonic Crystal. Occhicone A; Pea M; Polito R; Giliberti V; Sinibaldi A; Mattioli F; Cibella S; Notargiacomo A; Nucara A; Biagioni P; Michelotti F; Ortolani M; Baldassarre L ACS Photonics; 2021 Jan; 8(1):350-359. PubMed ID: 33585665 [TBL] [Abstract][Full Text] [Related]
13. Guided Bloch surface waves on ultrathin polymeric ridges. Descrovi E; Sfez T; Quaglio M; Brunazzo D; Dominici L; Michelotti F; Herzig HP; Martin OJ; Giorgis F Nano Lett; 2010 Jun; 10(6):2087-91. PubMed ID: 20446750 [TBL] [Abstract][Full Text] [Related]
14. Efficient Optical Sensing Based on Phase Shift of Waves Supported by a One-Dimensional Photonic Crystal. Kaňok R; Hlubina P; Gembalová L; Ciprian D Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640853 [TBL] [Abstract][Full Text] [Related]
15. High-Q lasing via all-dielectric Bloch-surface-wave platform. Lee YC; Ho YL; Lin BW; Chen MH; Xing D; Daiguji H; Delaunay JJ Nat Commun; 2023 Oct; 14(1):6458. PubMed ID: 37833267 [TBL] [Abstract][Full Text] [Related]
16. Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors. Balevicius Z; Baskys A Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561535 [TBL] [Abstract][Full Text] [Related]
17. Polarization controlled directional propagation of Bloch surface wave. Kovalevich T; Boyer P; Suarez M; Salut R; Kim MS; Herzig HP; Bernal MP; Grosjean T Opt Express; 2017 Mar; 25(5):5710-5715. PubMed ID: 28380827 [TBL] [Abstract][Full Text] [Related]
18. Optical pulling and pushing forces via Bloch surface waves. Kostina N; Petrov M; Bobrovs V; Shalin AS Opt Lett; 2022 Sep; 47(18):4592-4595. PubMed ID: 36107040 [TBL] [Abstract][Full Text] [Related]
19. Sensing concept based on Bloch surface waves and wavelength interrogation. Gryga M; Ciprian D; Hlubina P Opt Lett; 2020 Mar; 45(5):1096-1099. PubMed ID: 32108779 [TBL] [Abstract][Full Text] [Related]
20. Ultra-sensitive refractive index sensing enabled by a dramatic ellipsometric phase change at the band edge in a one-dimensional photonic crystal. Wu F; Liu D; Li Y; Li H Opt Express; 2022 Aug; 30(16):29030-29043. PubMed ID: 36299088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]