These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30564419)

  • 21. TiO
    Naveed AB; Javaid A; Zia A; Ishaq MT; Amin M; Farooqi ZUR; Mahmood A
    ACS Omega; 2023 Jan; 8(2):2173-2182. PubMed ID: 36687058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yield Response from the Catalytic Conversion of Parsley Seed Oil into Biodiesel Using a Heterogeneous and Homogeneous Catalyst.
    Bitire SO; Jen TC; Belaid M
    ACS Omega; 2021 Oct; 6(39):25124-25137. PubMed ID: 34632172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.
    Kuo TC; Shaw JF; Lee GC
    Bioresour Technol; 2015 Sep; 192():54-9. PubMed ID: 26011691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies.
    Sahani S; Roy T; Sharma YC
    Waste Manag; 2020 May; 108():189-201. PubMed ID: 32360999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodiesel Production Using Wild Apricot (
    Nisa B; Ullah F; Nisa I; Ahmad M; Zafar M; Munir M; Sultana S; Zaman W; Manghwar H; Ullah F; Khan MN; El-Ansary DO; Elansary HO
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.
    Jain S; Sharma MP
    Bioresour Technol; 2010 Oct; 101(20):7701-6. PubMed ID: 20570507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil.
    Tahvildari K; Anaraki YN; Fazaeli R; Mirpanji S; Delrish E
    J Environ Health Sci Eng; 2015; 13():73. PubMed ID: 26500782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of biodiesel from Jatropha curcas L. oil produced by two-phase solvent extraction.
    Qian J; Shi H; Yun Z
    Bioresour Technol; 2010 Sep; 101(18):7036-42. PubMed ID: 20434330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of biodiesel from Vietnamese Jatropha curcas oil by a co-solvent method.
    Luu PD; Truong HT; Luu BV; Pham LN; Imamura K; Takenaka N; Maeda Y
    Bioresour Technol; 2014 Dec; 173():309-316. PubMed ID: 25310867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A TiO
    Khan M; Farah H; Iqbal N; Noor T; Amjad MZB; Ejaz Bukhari SS
    RSC Adv; 2021 Nov; 11(59):37575-37583. PubMed ID: 35496397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic behavior of a ZnO/TiO
    Chong R; Qian F; Sun ZH; Wei MJ; Zhou WY; Zhang J; He MY; Chen Q; Qian JF
    RSC Adv; 2023 Feb; 13(8):4890-4897. PubMed ID: 36762090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cocoa pod husk: A new source of CLEA-lipase for preparation of low-cost biodiesel: An optimized process.
    Khanahmadi S; Yusof F; Chyuan Ong H; Amid A; Shah H
    J Biotechnol; 2016 Aug; 231():95-105. PubMed ID: 27184429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative spectroscopic analysis, performance and emissions evaluation of Madhuca longifolia and Jatropha curcas produced biodiesel.
    Chatterjee R; Mukherjee SK; Paul B; Chattopadhyaya S
    Environ Sci Pollut Res Int; 2021 Nov; 28(44):62444-62460. PubMed ID: 34212317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of biodiesel from waste cooking oils using heterogeneous Catalyst(Cat.TS-7) based on natural zeolite.
    Saad M; Siyo B; Alrakkad H
    Heliyon; 2023 Jun; 9(6):e15836. PubMed ID: 37274706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biodiesel production from Jatropha curcas: a critical review.
    Abdulla R; Chan ES; Ravindra P
    Crit Rev Biotechnol; 2011 Mar; 31(1):53-64. PubMed ID: 20572796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly active Ru/TiO
    Camposeco R; Miguel O; Torres AE; Armas DE; Zanella R
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):98076-98090. PubMed ID: 37603243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UiO-66 with Both Brønsted and Lewis Acid Sites for Catalytic Synthesis of Biodiesel.
    Wang Y; Yang Z; Wu X; Quan W; Chen Q; Wang A
    Molecules; 2024 Sep; 29(17):. PubMed ID: 39275043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and catalytic properties of calcium oxide obtained from organic ash over a titanium nanocatalyst for biodiesel production from dairy scum.
    Nabgan W; Nabgan B; Ikram M; Jadhav AH; Ali MW; Ul-Hamid A; Nam H; Lakshminarayana P; Kumar A; Bahari MB; Khusnun NF
    Chemosphere; 2022 Mar; 290():133296. PubMed ID: 34914962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-pot synthesis of acid-base bifunctional catalysts for biodiesel production.
    Dai YM; Li YY; Jia-Hao-Lin ; Chen BY; Chen CC
    J Environ Manage; 2021 Dec; 299():113592. PubMed ID: 34479149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of a palygorskite supported KF/CaO catalyst and its application for biodiesel production
    Li Y; Jiang Y
    RSC Adv; 2018 Apr; 8(29):16013-16018. PubMed ID: 35542237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.