These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30564425)

  • 1. Supersonic gas flow for preparation of ultrafine silicon powders and mechanochemical synthesis.
    Tao Y; Lin J; Zhang Z; Guo Q; Zuo J; Fan C; Lu B
    R Soc Open Sci; 2018 Nov; 5(11):181432. PubMed ID: 30564425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A supersonic target jet mill based on the entrainment of annular supersonic flow.
    Zhang Z; Lin J; Tao Y; Guo Q; Zuo J; Lu B; Liu G; Li J
    Rev Sci Instrum; 2018 Aug; 89(8):085104. PubMed ID: 30184694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of miniature supersonic nozzles for microparticle acceleration: a numerical study.
    Liu Y
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1814-21. PubMed ID: 17926679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetic studies at ultra-low temperatures.
    Jiménez E; Ballesteros B; Canosa A; Townsend TM; Maigler FJ; Napal V; Rowe BR; Albaladejo J
    Rev Sci Instrum; 2015 Apr; 86(4):045108. PubMed ID: 25933898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pair of concentric capillaries as an interface for gas chromatography and supersonic jet/multiphoton ionization/mass spectrometry.
    Okudaira H; Uchimura T; Imasaka T
    Rev Sci Instrum; 2010 Aug; 81(8):084102. PubMed ID: 20815616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel self-seeding method for particle image velocimetry measurements of subsonic and supersonic flows.
    Nematollahi O; Samsam-Khayani H; Nili-Ahmadabadi M; Yoon SY; Kim KC
    Sci Rep; 2020 Jul; 10(1):10834. PubMed ID: 32616771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Behavior of Supersonic Jets Generated by Combination Gas in the Steelmaking Process.
    Zhang B; Liu F; Zhu R
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of a jet-propelled particle injection system for the uniform transdermal delivery of drug/vaccine.
    Liu Y; Kendall MA
    Biotechnol Bioeng; 2007 Aug; 97(5):1300-8. PubMed ID: 17216659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Mechanochemical Approach to Porous Silicon Nanoparticles Fabrication.
    Russo L; Colangelo F; Cioffi R; Rea I; Stefano L
    Materials (Basel); 2011 Jun; 4(6):1023-1033. PubMed ID: 28879965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.
    Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB
    Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance studies of particle acceleration for transdermal drug delivery.
    Liu Y
    Med Biol Eng Comput; 2006 Jul; 44(7):551-9. PubMed ID: 16937191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion.
    Abbate G; Kleijn CR; Thijsse BJ; Engeln R; van de Sanden MC; Schram DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036703. PubMed ID: 18517553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure improvements and numerical simulation of supersonic separators with diversion cone for separation and purification.
    Wang Y; Hu D
    RSC Adv; 2018 Mar; 8(19):10228-10236. PubMed ID: 35558660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.
    Christen W; Rademann K; Even U
    J Phys Chem A; 2010 Oct; 114(42):11189-201. PubMed ID: 20961156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flowing-gas diode pumped alkali lasers: theoretical analysis of transonic vs supersonic and subsonic devices.
    Yacoby E; Waichman K; Sadot O; Barmashenko BD; Rosenwaks S
    Opt Express; 2016 Mar; 24(5):5469-5477. PubMed ID: 29092370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal degradation events as health hazards: particle vs gas phase effects, mechanistic studies with particles.
    Oberdörster G; Ferin J; Finkelstein J; Soderholm S
    Acta Astronaut; 1992; 27():251-6. PubMed ID: 11537569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic nozzle device for ultrafine fiber solution blow spinning with precise diameter control.
    Hofmann E; Krüger K; Haynl C; Scheibel T; Trebbin M; Förster S
    Lab Chip; 2018 Jul; 18(15):2225-2234. PubMed ID: 29946624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersonic laser propulsion.
    Rezunkov Y; Schmidt A
    Appl Opt; 2014 Nov; 53(31):I55-62. PubMed ID: 25402938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of poly-L-lactic acid microspheres into the skin using supersonic flow: effects of helium gas pressure, particle size and microparticle dose on the amount introduced into hairless rat skin.
    Uchida M; Jin Y; Natsume H; Kobayashi D; Sugibayashi K; Morimoto Y
    J Pharm Pharmacol; 2002 Jun; 54(6):781-90. PubMed ID: 12078994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.