These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30564457)

  • 1. Mathematical model of hemodynamic mechanisms and consequences of glomerular hypertension in diabetic mice.
    Mahato HS; Ahlstrom C; Jansson-Löfmark R; Johansson U; Helmlinger G; Hallow KM
    NPJ Syst Biol Appl; 2019; 5():2. PubMed ID: 30564457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis.
    Hallow KM; Gebremichael Y; Helmlinger G; Vallon V
    Am J Physiol Renal Physiol; 2017 May; 312(5):F819-F835. PubMed ID: 28148531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats.
    Thomson SC; Vallon V
    Am J Physiol Renal Physiol; 2021 May; 320(5):F761-F771. PubMed ID: 33645318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tubular hypothesis of nephron filtration and diabetic kidney disease.
    Vallon V; Thomson SC
    Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubular reabsorption and diabetes-induced glomerular hyperfiltration.
    Persson P; Hansell P; Palm F
    Acta Physiol (Oxf); 2010 Sep; 200(1):3-10. PubMed ID: 20518753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of the rat nephron: glucose transport.
    Weinstein AM
    Am J Physiol Renal Physiol; 2015 May; 308(10):F1098-118. PubMed ID: 25694480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SGLT2 Inhibitors and the Diabetic Kidney.
    Fioretto P; Zambon A; Rossato M; Busetto L; Vettor R
    Diabetes Care; 2016 Aug; 39 Suppl 2():S165-71. PubMed ID: 27440829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of glomerular hyperfiltration and renal hypertrophy by an angiotensin converting enzyme inhibitor prevents the progression of renal damage in hypertensive diabetic rats.
    Fabris B; Candido R; Armini L; Fischetti F; Calci M; Bardelli M; Fazio M; Campanacci L; Carretta R
    J Hypertens; 1999 Dec; 17(12 Pt 2):1925-31. PubMed ID: 10703891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glomerular hemodynamic and structural alterations in experimental diabetes mellitus.
    O'Donnell MP; Kasiske BL; Keane WF
    FASEB J; 1988 May; 2(8):2339-47. PubMed ID: 3282959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperfiltration and diabetic nephropathy: is it the beginning? Or is it the end?
    Castellino P; Shohat J; DeFronzo RA
    Semin Nephrol; 1990 May; 10(3):228-41. PubMed ID: 2190280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of sodium-linked glucose reabsorption normalizes diabetes-induced glomerular hyperfiltration in conscious adenosine A₁-receptor deficient mice.
    Sällström J; Eriksson T; Fredholm BB; Persson AE; Palm F
    Acta Physiol (Oxf); 2014 Feb; 210(2):440-5. PubMed ID: 23901799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F199-F209. PubMed ID: 28331059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empagliflozin Reduces Renal Hyperfiltration in Response to Uninephrectomy, but Is Not Nephroprotective in UNx/DOCA/Salt Mouse Models.
    Tauber P; Sinha F; Berger RS; Gronwald W; Dettmer K; Kuhn M; Trum M; Maier LS; Wagner S; Schweda F
    Front Pharmacol; 2021; 12():761855. PubMed ID: 34992532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-Glucose Cotransporter-2 Inhibition and the Glomerulus: A Review.
    Kalra S; Singh V; Nagrale D
    Adv Ther; 2016 Sep; 33(9):1502-18. PubMed ID: 27423646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glomerular hyperfiltration in type 1 diabetes mellitus results from primary changes in proximal tubular sodium handling without changes in volume expansion.
    Vervoort G; Veldman B; Berden JH; Smits P; Wetzels JF
    Eur J Clin Invest; 2005 May; 35(5):330-6. PubMed ID: 15860045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy.
    Škrtić M; Cherney DZ
    Curr Opin Nephrol Hypertens; 2015 Jan; 24(1):96-103. PubMed ID: 25470017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-1β Inhibition for Chronic Kidney Disease in Obese Mice With Type 2 Diabetes.
    Lei Y; Devarapu SK; Motrapu M; Cohen CD; Lindenmeyer MT; Moll S; Kumar SV; Anders HJ
    Front Immunol; 2019; 10():1223. PubMed ID: 31191559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Image Analyses of Glomerular Hypertrophy in a Mouse Model of Diabetic Nephropathy.
    Østergaard MV; Sembach FE; Skytte JL; Roostalu U; Secher T; Overgaard A; Fink LN; Vrang N; Jelsing J; Hecksher-Sørensen J
    Kidney360; 2020 Jun; 1(6):469-479. PubMed ID: 35368599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glomerular filtration in essential hypertension: role of abnormal Na+ transport and atrial natriuretic peptide.
    Semplicini A; Ceolotto G; Sartori M; Maresca A; Baritono E; De Toni R; Paparella I; Calò L
    J Nephrol; 2002; 15(5):489-96. PubMed ID: 12455714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.