These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30564518)

  • 1. JacLy: a Jacobian-based method for the inference of metabolic interactions from the covariance of steady-state metabolome data.
    Khatibipour MJ; Kurtoğlu F; Çakır T
    PeerJ; 2018; 6():e6034. PubMed ID: 30564518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparsity as cellular objective to infer directed metabolic networks from steady-state metabolome data: a theoretical analysis.
    Öksüz M; Sadıkoğlu H; Çakır T
    PLoS One; 2013; 8(12):e84505. PubMed ID: 24391961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solving the differential biochemical Jacobian from metabolomics covariance data.
    Nägele T; Mair A; Sun X; Fragner L; Teige M; Weckwerth W
    PLoS One; 2014; 9(4):e92299. PubMed ID: 24695071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic network discovery through reverse engineering of metabolome data.
    Cakır T; Hendriks MM; Westerhuis JA; Smilde AK
    Metabolomics; 2009 Sep; 5(3):318-329. PubMed ID: 19718266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges of Inversely Estimating Jacobian from Metabolomics Data.
    Sun X; Länger B; Weckwerth W
    Front Bioeng Biotechnol; 2015; 3():188. PubMed ID: 26636075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions.
    Kügler P; Yang W
    J Math Biol; 2014 Jun; 68(7):1757-83. PubMed ID: 23708492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation and Reconstruction of Metabolite-Metabolite Association Networks Using a Metabolic Dynamic Model and Correlation Based Algorithms.
    Jahagirdar S; Suarez-Diez M; Saccenti E
    J Proteome Res; 2019 Mar; 18(3):1099-1113. PubMed ID: 30663881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulas for intrinsic noise evaluation in oscillatory genetic networks.
    Ito Y; Uchida K
    J Theor Biol; 2010 Nov; 267(2):223-34. PubMed ID: 20800602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.
    Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M
    Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early-warning signals using dynamical network markers selected by covariance.
    Matsumori T; Sakai H; Aihara K
    Phys Rev E; 2019 Nov; 100(5-1):052303. PubMed ID: 31870037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemicalome and metabolome matching approach to elucidating biological metabolic networks of complex mixtures.
    Gong P; Cui N; Wu L; Liang Y; Hao K; Xu X; Tang W; Wang G; Hao H
    Anal Chem; 2012 Mar; 84(6):2995-3002. PubMed ID: 22356250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations of Correlation-Based Inference in Complex Virus-Microbe Communities.
    Coenen AR; Weitz JS
    mSystems; 2018; 3(4):. PubMed ID: 30175237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A large-scale analysis of targeted metabolomics data from heterogeneous biological samples provides insights into metabolite dynamics.
    Lee HJ; Kremer DM; Sajjakulnukit P; Zhang L; Lyssiotis CA
    Metabolomics; 2019 Jul; 15(7):103. PubMed ID: 31289941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.
    Narimani Z; Beigy H; Ahmad A; Masoudi-Nejad A; Fröhlich H
    PLoS One; 2017; 12(2):e0171240. PubMed ID: 28166542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Network Inference Using Hierarchical Structure.
    Kimura S; Tokuhisa M; Okada-Hatakeyama M
    Front Physiol; 2016; 7():57. PubMed ID: 26941653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse engineering gene regulatory networks from measurement with missing values.
    Ogundijo OE; Elmas A; Wang X
    EURASIP J Bioinform Syst Biol; 2016 Dec; 2017(1):2. PubMed ID: 28127303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Network Modeling of Stem Cell Metabolism.
    Shen F; Cheek C; Chandrasekaran S
    Methods Mol Biol; 2019; 1975():305-320. PubMed ID: 31062316
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.