BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30564851)

  • 1. Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum.
    Fujita K; Sakamoto A; Kaneko S; Kotake T; Tsumuraya Y; Kitahara K
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1299-1310. PubMed ID: 30564851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Cooperative Degradation of Gum Arabic Arabinogalactan Protein by Bifidobacterium longum Surface Enzymes.
    Sasaki Y; Komeno M; Ishiwata A; Horigome A; Odamaki T; Xiao JZ; Tanaka K; Ito Y; Kitahara K; Ashida H; Fujita K
    Appl Environ Microbiol; 2022 Mar; 88(6):e0218721. PubMed ID: 35108084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifidobacterium longum subsp. longum Exo-β-1,3-Galactanase, an enzyme for the degradation of type II arabinogalactan.
    Fujita K; Sakaguchi T; Sakamoto A; Shimokawa M; Kitahara K
    Appl Environ Microbiol; 2014 Aug; 80(15):4577-84. PubMed ID: 24837371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel 3-
    Sasaki Y; Horigome A; Odamaki T; Xiao JZ; Ishiwata A; Ito Y; Kitahara K; Fujita K
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33674431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Novel α-l-Arabinofuranosidases from
    Komeno M; Hayamizu H; Fujita K; Ashida H
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an exo-ß-1,3-D-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan.
    Okawa M; Fukamachi K; Tanaka H; Sakamoto T
    Appl Microbiol Biotechnol; 2013 Nov; 97(22):9685-94. PubMed ID: 23429923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabinogalactan Utilization by
    Wang Y; LaPointe G
    Microorganisms; 2020 Oct; 8(11):. PubMed ID: 33142707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense.
    Bunesova V; Lacroix C; Schwab C
    BMC Microbiol; 2016 Oct; 16(1):248. PubMed ID: 27782805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two α-L-arabinofuranosidases from Bifidobacterium longum subsp. longum are involved in arabinoxylan utilization.
    Komeno M; Yoshihara Y; Kawasaki J; Nabeshima W; Maeda K; Sasaki Y; Fujita K; Ashida H
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1957-1965. PubMed ID: 35235007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697.
    Viborg AH; Katayama T; Abou Hachem M; Andersen MC; Nishimoto M; Clausen MH; Urashima T; Svensson B; Kitaoka M
    Glycobiology; 2014 Feb; 24(2):208-16. PubMed ID: 24270321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two extracellular α-arabinofuranosidases are required for cereal-derived arabinoxylan metabolism by
    Friess L; Bottacini F; McAuliffe FM; O'Neill IJ; Cotter PD; Lee C; Munoz-Munoz J; van Sinderen D
    Gut Microbes; 2024; 16(1):2353229. PubMed ID: 38752423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans.
    Fujita K; Tsunomachi H; Lixia P; Maruyama S; Miyake M; Dakeshita A; Kitahara K; Tanaka K; Ito Y; Ishiwata A; Fushinobu S
    Appl Microbiol Biotechnol; 2024 Feb; 108(1):199. PubMed ID: 38324037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of α-L-arabinofuranosidase and bifunctional α-L-arabinopyranosidase/β-D-galactopyranosidase from Bifidobacterium longum H-1.
    Lee JH; Hyun YJ; Kim DH
    J Appl Microbiol; 2011 Nov; 111(5):1097-107. PubMed ID: 21851513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an exo-β-1,3-D: -galactanase from Sphingomonas sp. 24T and its application to structural analysis of larch wood arabinogalactan.
    Sakamoto T; Tanaka H; Nishimura Y; Ishimaru M; Kasai N
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1701-10. PubMed ID: 21452032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and expression in Pichia pastoris of a Irpex lacteus exo-beta-(1-->3)-galactanase gene.
    Kotake T; Kitazawa K; Takata R; Okabe K; Ichinose H; Kaneko S; Tsumuraya Y
    Biosci Biotechnol Biochem; 2009 Oct; 73(10):2303-9. PubMed ID: 19809200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of the Bifidobacterial Pan-Secretome Reveals the Network of Extracellular Interactions between Bifidobacteria and the Infant Gut.
    Lugli GA; Mancino W; Milani C; Duranti S; Turroni F; van Sinderen D; Ventura M
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assimilation of arabinogalactan side chains with novel 3-
    Sasaki Y; Yanagita M; Hashiguchi M; Horigome A; Xiao JZ; Odamaki T; Kitahara K; Fujita K
    Microbiome Res Rep; 2023; 2(2):12. PubMed ID: 38047276
    [No Abstract]   [Full Text] [Related]  

  • 18. Functional Characterization of Endo- and Exo-Hydrolase Genes in Arabinan Degradation Gene Cluster of
    Kang Y; Choi CY; Kang J; Ju YR; Kim HB; Han NS; Kim TJ
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization of a GH53 endo-β-1,4-galactanase and a GH35 exo-β-1,4-galactanase from Penicillium chrysogenum.
    Sakamoto T; Nishimura Y; Makino Y; Sunagawa Y; Harada N
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2895-906. PubMed ID: 22584433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yariv reactivity of type II arabinogalactan from larch wood.
    Sato K; Hara K; Yoshimi Y; Kitazawa K; Ito H; Tsumuraya Y; Kotake T
    Carbohydr Res; 2018 Sep; 467():8-13. PubMed ID: 30036728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.