These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30564940)

  • 21. Chemlistem: chemical named entity recognition using recurrent neural networks.
    Corbett P; Boyle J
    J Cheminform; 2018 Dec; 10(1):59. PubMed ID: 30523437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations.
    Munkhdalai T; Li M; Batsuren K; Park HA; Choi NH; Ryu KH
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S9. PubMed ID: 25810780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of conditional random fields and structured support vector machines for chemical entity recognition in biomedical literature.
    Tang B; Feng Y; Wang X; Wu Y; Zhang Y; Jiang M; Wang J; Xu H
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S8. PubMed ID: 25810779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long short-term memory RNN for biomedical named entity recognition.
    Lyu C; Chen B; Ren Y; Ji D
    BMC Bioinformatics; 2017 Oct; 18(1):462. PubMed ID: 29084508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying Chemical Reactions and Their Associated Attributes in Patents.
    Mahendran D; Gurdin G; Lewinski N; Tang C; McInnes BT
    Front Res Metr Anal; 2021; 6():688353. PubMed ID: 34322654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CHEMDNER: The drugs and chemical names extraction challenge.
    Krallinger M; Leitner F; Rabal O; Vazquez M; Oyarzabal J; Valencia A
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S1. PubMed ID: 25810766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recognizing names in biomedical texts: a machine learning approach.
    Zhou G; Zhang J; Su J; Shen D; Tan C
    Bioinformatics; 2004 May; 20(7):1178-90. PubMed ID: 14871877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CollaboNet: collaboration of deep neural networks for biomedical named entity recognition.
    Yoon W; So CH; Lee J; Kang J
    BMC Bioinformatics; 2019 May; 20(Suppl 10):249. PubMed ID: 31138109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving deep learning method for biomedical named entity recognition by using entity definition information.
    Xiong Y; Chen S; Tang B; Chen Q; Wang X; Yan J; Zhou Y
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):600. PubMed ID: 34920699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MER: a shell script and annotation server for minimal named entity recognition and linking.
    Couto FM; Lamurias A
    J Cheminform; 2018 Dec; 10(1):58. PubMed ID: 30519990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hybrid deep learning framework for bacterial named entity recognition with domain features.
    Li X; Fu C; Zhong R; Zhong D; He T; Jiang X
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):583. PubMed ID: 31787075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. D3NER: biomedical named entity recognition using CRF-biLSTM improved with fine-tuned embeddings of various linguistic information.
    Dang TH; Le HQ; Nguyen TM; Vu ST
    Bioinformatics; 2018 Oct; 34(20):3539-3546. PubMed ID: 29718118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records.
    Cai X; Dong S; Hu J
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):65. PubMed ID: 30961622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Entity recognition from clinical texts via recurrent neural network.
    Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H
    BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A document processing pipeline for annotating chemical entities in scientific documents.
    Campos D; Matos S; Oliveira JL
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S7. PubMed ID: 25810778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases.
    Bhasuran B; Murugesan G; Abdulkadhar S; Natarajan J
    J Biomed Inform; 2016 Dec; 64():1-9. PubMed ID: 27634494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records.
    Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Putting hands to rest: efficient deep CNN-RNN architecture for chemical named entity recognition with no hand-crafted rules.
    Korvigo I; Holmatov M; Zaikovskii A; Skoblov M
    J Cheminform; 2018 May; 10(1):28. PubMed ID: 29796778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Configurable web-services for biomedical document annotation.
    Matos S
    J Cheminform; 2018 Dec; 10(1):68. PubMed ID: 30578450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BioCreative V CDR task corpus: a resource for chemical disease relation extraction.
    Li J; Sun Y; Johnson RJ; Sciaky D; Wei CH; Leaman R; Davis AP; Mattingly CJ; Wiegers TC; Lu Z
    Database (Oxford); 2016; 2016():. PubMed ID: 27161011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.