BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3056523)

  • 1. Characteristics of GTP-mediated microsomal Ca2+ release.
    Joseph SK; Rice HL; Nicchitta CV
    Biochim Biophys Acta; 1988 Nov; 945(2):185-94. PubMed ID: 3056523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MgATP-dependent glucose 6-phosphate-stimulated Ca2+ accumulation in liver microsomal fractions. Effects of inositol 1,4,5-trisphosphate and GTP.
    Benedetti A; Fulceri R; Romani A; Comporti M
    J Biol Chem; 1988 Mar; 263(7):3466-73. PubMed ID: 3257759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles.
    Dawson AP; Hills G; Comerford JG
    Biochem J; 1987 May; 244(1):87-92. PubMed ID: 3499139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes.
    Dawson AP
    FEBS Lett; 1985 Jun; 185(1):147-50. PubMed ID: 3873359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca2+ efflux from a rat liver microsomal fraction. Is a GTP-dependent protein phosphorylation involved?
    Dawson AP; Comerford JG; Fulton DV
    Biochem J; 1986 Mar; 234(2):311-5. PubMed ID: 3487314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms.
    Chueh SH; Gill DL
    J Biol Chem; 1986 Oct; 261(30):13883-6. PubMed ID: 3533912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GTP-dependent Ca2+ release from rat liver microsomes. Vesicle fusion is not required.
    Kleineke J; Schröder A; Söling HD
    FEBS Lett; 1989 Mar; 245(1-2):274-8. PubMed ID: 2647523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the N1E-115 neuronal cell line.
    Ueda T; Chueh SH; Noel MW; Gill DL
    J Biol Chem; 1986 Mar; 261(7):3184-92. PubMed ID: 3081502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GTP-mediated Ca2+ release in rough endoplasmic reticulum. Correlation with a GTP-sensitive increase in membrane permeability.
    Nicchitta CV; Joseph SK; Williamson JR
    Biochem J; 1987 Dec; 248(3):741-7. PubMed ID: 2829838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of inositol 1,4,5-trisphosphate and GTP on calcium release from pituitary microsomes.
    Kiesel L; Lukács GL; Eberhardt I; Runnebaum B; Spät A
    FEBS Lett; 1987 Jun; 217(1):85-8. PubMed ID: 3496242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of inositol 1,4,5-trisphosphate and GTP on calcium release from rat liver microsomes.
    Lukács GL; Hajnóczky G; Hunyady L; Spät A
    Biochim Biophys Acta; 1987 Nov; 931(2):251-4. PubMed ID: 3499178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GTP- and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines.
    Chueh SH; Mullaney JM; Ghosh TK; Zachary AL; Gill DL
    J Biol Chem; 1987 Oct; 262(28):13857-64. PubMed ID: 3498720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H+ uptake increases GTP-induced connection of inositol 1,4,5-trisphosphate- and caffeine-sensitive calcium pools in pancreatic microsomal vesicles.
    Ozawa T; Schulz I
    Biochem Biophys Res Commun; 1991 Oct; 180(2):755-64. PubMed ID: 1835385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the inositol 1,4,5-trisphosphate-releasable Ca2+ pool by GTP in permeabilized hepatocytes.
    Thomas AP
    J Biol Chem; 1988 Feb; 263(6):2704-11. PubMed ID: 3277959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs.
    Miyazaki S
    J Cell Biol; 1988 Feb; 106(2):345-53. PubMed ID: 3123497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanosine 5'-triphosphate releases calcium from rat liver and guinea pig parotid gland endoplasmic reticulum independently of inositol 1,4,5-trisphosphate.
    Henne V; Söling HD
    FEBS Lett; 1986 Jul; 202(2):267-73. PubMed ID: 3487467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyethylene glycol-stimulated microsomal GTP hydrolysis. Relationship to GTP-mediated Ca2+ release.
    Nicchitta CV; Joseph SK; Williamson JR
    FEBS Lett; 1986 Dec; 209(2):243-8. PubMed ID: 3025017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanine nucleotide-, and inositol triphosphate-induced inhibition of the CA2+ pump in rat heart sarcolemmal vesicles.
    Kuo TH
    Biochem Biophys Res Commun; 1988 May; 152(3):1111-6. PubMed ID: 2967696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of intracellular calcium redistribution by guanine nucleotides and inositol 1,4,5-trisphosphate in permeabilized GH4C1 cells.
    Koshiyama H; Tashjian AH
    Endocrinology; 1991 Jun; 128(6):2715-22. PubMed ID: 1903695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoinositide hydrolysis by guanosine 5'-[gamma-thio]triphosphate-activated phospholipase C of turkey erythrocyte membranes.
    Harden TK; Hawkins PT; Stephens L; Boyer JL; Downes CP
    Biochem J; 1988 Jun; 252(2):583-93. PubMed ID: 2843174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.