These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30565316)

  • 21. RepeatFS: a file system providing reproducibility through provenance and automation.
    Westbrook A; Varki E; Thomas WK
    Bioinformatics; 2021 Jun; 37(9):1292-1296. PubMed ID: 33230554
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Managing Complex Workflows in Bioinformatics: An Interactive Toolkit With GPU Acceleration.
    Welivita A; Perera I; Meedeniya D; Wickramarachchi A; Mallawaarachchi V
    IEEE Trans Nanobioscience; 2018 Jul; 17(3):199-208. PubMed ID: 29994533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biowep: a workflow enactment portal for bioinformatics applications.
    Romano P; Bartocci E; Bertolini G; De Paoli F; Marra D; Mauri G; Merelli E; Milanesi L
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S19. PubMed ID: 17430563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facilitating bioinformatics reproducibility with QIIME 2 Provenance Replay.
    Keefe CR; Dillon MR; Gehret E; Herman C; Jewell M; Wood CV; Bolyen E; Caporaso JG
    PLoS Comput Biol; 2023 Nov; 19(11):e1011676. PubMed ID: 38011287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RABIX: AN OPEN-SOURCE WORKFLOW EXECUTOR SUPPORTING RECOMPUTABILITY AND INTEROPERABILITY OF WORKFLOW DESCRIPTIONS.
    Kaushik G; Ivkovic S; Simonovic J; Tijanic N; Davis-Dusenbery B; Kural D
    Pac Symp Biocomput; 2017; 22():154-165. PubMed ID: 27896971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Building Containerized Workflows Using the BioDepot-Workflow-Builder.
    Hung LH; Hu J; Meiss T; Ingersoll A; Lloyd W; Kristiyanto D; Xiong Y; Sobie E; Yeung KY
    Cell Syst; 2019 Nov; 9(5):508-514.e3. PubMed ID: 31521606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experiences with workflows for automating data-intensive bioinformatics.
    Spjuth O; Bongcam-Rudloff E; Hernández GC; Forer L; Giovacchini M; Guimera RV; Kallio A; Korpelainen E; Kańduła MM; Krachunov M; Kreil DP; Kulev O; Łabaj PP; Lampa S; Pireddu L; Schönherr S; Siretskiy A; Vassilev D
    Biol Direct; 2015 Aug; 10():43. PubMed ID: 26282399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Support for Taverna workflows in the VPH-Share cloud platform.
    Kasztelnik M; Coto E; Bubak M; Malawski M; Nowakowski P; Arenas J; Saglimbeni A; Testi D; Frangi AF
    Comput Methods Programs Biomed; 2017 Jul; 146():37-46. PubMed ID: 28688488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anduril 2: upgraded large-scale data integration framework.
    Cervera A; Rantanen V; Ovaska K; Laakso M; Nuñez-Fontarnau J; Alkodsi A; Casado J; Facciotto C; Häkkinen A; Louhimo R; Karinen S; Zhang K; Lavikka K; Lyly L; Pal Singh M; Hautaniemi S
    Bioinformatics; 2019 Oct; 35(19):3815-3817. PubMed ID: 30793160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Workflow systems turn raw data into scientific knowledge.
    Perkel JM
    Nature; 2019 Sep; 573(7772):149-150. PubMed ID: 31477884
    [No Abstract]   [Full Text] [Related]  

  • 31. Constructing computational pipelines.
    Halling-Brown M; Shepherd AJ
    Methods Mol Biol; 2008; 453():451-70. PubMed ID: 18712319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Agile parallel bioinformatics workflow management using Pwrake.
    Mishima H; Sasaki K; Tanaka M; Tatebe O; Yoshiura K
    BMC Res Notes; 2011 Sep; 4():331. PubMed ID: 21899774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BioWMS: a web-based Workflow Management System for bioinformatics.
    Bartocci E; Corradini F; Merelli E; Scortichini L
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S2. PubMed ID: 17430564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines.
    Lampa S; Dahlö M; Alvarsson J; Spjuth O
    Gigascience; 2019 May; 8(5):. PubMed ID: 31029061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Creating reproducible pharmacogenomic analysis pipelines.
    Mammoliti A; Smirnov P; Safikhani Z; Ba-Alawi W; Haibe-Kains B
    Sci Data; 2019 Sep; 6(1):166. PubMed ID: 31481707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the impact of introductory programming workshops on the computational reproducibility of biomedical workflows.
    Deardorff A
    PLoS One; 2020; 15(7):e0230697. PubMed ID: 32639955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AlgoRun: a Docker-based packaging system for platform-agnostic implemented algorithms.
    Hosny A; Vera-Licona P; Laubenbacher R; Favre T
    Bioinformatics; 2016 Aug; 32(15):2396-8. PubMed ID: 27153722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managers.
    Wratten L; Wilm A; Göke J
    Nat Methods; 2021 Oct; 18(10):1161-1168. PubMed ID: 34556866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinformatics Workflows With NoSQL Database in Cloud Computing.
    Wercelens P; da Silva W; Hondo F; Castro K; Walter ME; Araújo A; Lifschitz S; Holanda M
    Evol Bioinform Online; 2019; 15():1176934319889974. PubMed ID: 31839702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wildfire: distributed, Grid-enabled workflow construction and execution.
    Tang F; Chua CL; Ho LY; Lim YP; Issac P; Krishnan A
    BMC Bioinformatics; 2005 Mar; 6():69. PubMed ID: 15788106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.