BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30565343)

  • 1. Decoding vibrotactile choice independent of stimulus order and saccade selection during sequential comparisons.
    Wu YH; Velenosi LA; Schröder P; Ludwig S; Blankenburg F
    Hum Brain Mapp; 2019 Apr; 40(6):1898-1907. PubMed ID: 30565343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response modality-dependent categorical choice representations for vibrotactile comparisons.
    Wu YH; Velenosi LA; Blankenburg F
    Neuroimage; 2021 Feb; 226():117592. PubMed ID: 33248258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multisensory coding in the multiple-demand regions: vibrotactile task information is coded in frontoparietal cortex.
    Woolgar A; Zopf R
    J Neurophysiol; 2017 Aug; 118(2):703-716. PubMed ID: 28404826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A somatosensory-to-motor cascade of cortical areas engaged in perceptual decision making during tactile pattern discrimination.
    Hegner YL; Lindner A; Braun C
    Hum Brain Mapp; 2017 Mar; 38(3):1172-1181. PubMed ID: 27767240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Content-Specific Codes of Parametric Vibrotactile Working Memory in Humans.
    Schmidt TT; Wu YH; Blankenburg F
    J Neurosci; 2017 Oct; 37(40):9771-9777. PubMed ID: 28893928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task dependence of decision- and choice-related activity in monkey oculomotor thalamus.
    Costello MG; Zhu D; May PJ; Salinas E; Stanford TR
    J Neurophysiol; 2016 Jan; 115(1):581-601. PubMed ID: 26467516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network.
    Jarvstad A; Gilchrist ID
    J Neurosci; 2019 Mar; 39(13):2497-2508. PubMed ID: 30683684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A vibrotactile behavioral battery for investigating somatosensory processing in children and adults.
    Puts NA; Edden RA; Wodka EL; Mostofsky SH; Tommerdahl M
    J Neurosci Methods; 2013 Aug; 218(1):39-47. PubMed ID: 23660524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of evidence accumulation in a perceptual decision task.
    Liu T; Pleskac TJ
    J Neurophysiol; 2011 Nov; 106(5):2383-98. PubMed ID: 21849612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceptual modulation of motor--but not visual--responses in the frontal eye field during an urgent-decision task.
    Costello MG; Zhu D; Salinas E; Stanford TR
    J Neurosci; 2013 Oct; 33(41):16394-408. PubMed ID: 24107969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Categorization of Vibrotactile Frequency in Flutter and Vibration Stimulations: An fMRI Study.
    Kim J; Chung YG; Chung SC; Bulthoff HH; Kim SP
    IEEE Trans Haptics; 2016; 9(4):455-464. PubMed ID: 27479977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of flutter-range vibrotactile detection and discrimination thresholds.
    Mikkelsen M; He J; Tommerdahl M; Edden RAE; Mostofsky SH; Puts NAJ
    Sci Rep; 2020 Apr; 10(1):6528. PubMed ID: 32300187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-dependent patterns of somatosensory cortical responses to vibrotactile stimulation in humans: a fMRI study.
    Chung YG; Kim J; Han SW; Kim HS; Choi MH; Chung SC; Park JY; Kim SP
    Brain Res; 2013 Apr; 1504():47-57. PubMed ID: 23399687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical correlates of perceptual decision making during tactile spatial pattern discrimination.
    Li Hegner Y; Lindner A; Braun C
    Hum Brain Mapp; 2015 Sep; 36(9):3339-50. PubMed ID: 26095426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccades to somatosensory targets. II. motor convergence in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):428-38. PubMed ID: 8822568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prior Information biases stimulus representations during vibrotactile decision making.
    Preuschhof C; Schubert T; Villringer A; Heekeren HR
    J Cogn Neurosci; 2010 May; 22(5):875-87. PubMed ID: 19413475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccades to somatosensory targets. I. behavioral characteristics.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):412-27. PubMed ID: 8822567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.