These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3056537)

  • 1. Modulation of membrane surface curvature by peptide-lipid interactions.
    Batenburg AM; de Kruijff B
    Biosci Rep; 1988 Aug; 8(4):299-307. PubMed ID: 3056537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of melittin-induced lysis by surface charge density of membranes.
    Monette M; Lafleur M
    Biophys J; 1995 Jan; 68(1):187-95. PubMed ID: 7711241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freeze-fracture study of cardiotoxin action on axonal membrane and axonal membrane lipid vesicles.
    Gulik-Krzywicki T; Balerna M; Vincent JP; Lazdunski M
    Biochim Biophys Acta; 1981 Apr; 643(1):101-14. PubMed ID: 7236681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of lipid chain unsaturation on membrane-bound melittin: a fluorescence approach.
    Raghuraman H; Chattopadhyay A
    Biochim Biophys Acta; 2004 Oct; 1665(1-2):29-39. PubMed ID: 15471568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function.
    Ghosh AK; Rukmini R; Chattopadhyay A
    Biochemistry; 1997 Nov; 36(47):14291-305. PubMed ID: 9398147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach.
    Huang WN; Sue SC; Wang DS; Wu PL; Wu WG
    Biochemistry; 2003 Jun; 42(24):7457-66. PubMed ID: 12809502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of fluoresceinphosphatidylethanolamine (FPE) as a real-time probe for peptide-membrane interactions.
    Wall J; Golding CA; Van Veen M; O'Shea P
    Mol Membr Biol; 1995; 12(2):183-92. PubMed ID: 7795709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of high levels of endogenous phospholipase A2 in cultured cells.
    Shier WT
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):195-9. PubMed ID: 106389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the effects of melittin on liposomes.
    Popplewell JF; Swann MJ; Freeman NJ; McDonnell C; Ford RC
    Biochim Biophys Acta; 2007 Jan; 1768(1):13-20. PubMed ID: 17092481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study.
    Oren Z; Shai Y
    Biochemistry; 1997 Feb; 36(7):1826-35. PubMed ID: 9048567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of melittin with negatively charged phospholipids: consequences for lipid organization.
    Batenburg AM; van Esch JH; Leunissen-Bijvelt J; Verkleij AJ; de Kruijff B
    FEBS Lett; 1987 Oct; 223(1):148-54. PubMed ID: 3666135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implicit solvent simulations of peptide interactions with anionic lipid membranes.
    Lazaridis T
    Proteins; 2005 Feb; 58(3):518-27. PubMed ID: 15609352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer.
    Sharma VK; Mamontov E; Anunciado DB; O'Neill H; Urban VS
    Soft Matter; 2015 Sep; 11(34):6755-67. PubMed ID: 26212615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. riDOM, a cell penetrating peptide. Interaction with phospholipid bilayers.
    Québatte G; Kitas E; Seelig J
    Biochim Biophys Acta; 2014 Mar; 1838(3):968-77. PubMed ID: 24184424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence quenching study of melittin-membrane interactions.
    Ladokhin AS; Holloway PW
    Ukr Biokhim Zh (1978); 1995; 67(2):34-40. PubMed ID: 8592783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization.
    Batenburg AM; Demel RA; Verkleij AJ; de Kruijff B
    Biochemistry; 1988 Jul; 27(15):5678-85. PubMed ID: 3052582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melittin: a membrane-active peptide with diverse functions.
    Raghuraman H; Chattopadhyay A
    Biosci Rep; 2007 Oct; 27(4-5):189-223. PubMed ID: 17139559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Membrane-Active Peptides Get into Lipid Membranes.
    Sani MA; Separovic F
    Acc Chem Res; 2016 Jun; 49(6):1130-8. PubMed ID: 27187572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.