BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 30565431)

  • 41. Ultra-stable MOF@MOF nanoplatform for photodynamic therapy sensitized by relieved hypoxia due to mitochondrial respiration inhibition.
    Yu J; Li Q; Wei Z; Fan G; Wan F; Tian L
    Acta Biomater; 2023 Oct; 170():330-343. PubMed ID: 37607616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Renal-Clearable Porphyrinic Metal-Organic Framework Nanodots for Enhanced Photodynamic Therapy.
    Wang H; Yu D; Fang J; Cao C; Liu Z; Ren J; Qu X
    ACS Nano; 2019 Aug; 13(8):9206-9217. PubMed ID: 31408319
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers.
    Zhao J; Duan L; Wang A; Fei J; Li J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jan; 12(1):e1583. PubMed ID: 31566931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A promising strategy for synergistic cancer therapy by integrating a photosensitizer into a hypoxia-activated prodrug.
    Yang DC; Yang XZ; Luo CM; Wen LF; Liu JY; Lin Z
    Eur J Med Chem; 2022 Dec; 243():114749. PubMed ID: 36115207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer.
    Yang G; Xu L; Xu J; Zhang R; Song G; Chao Y; Feng L; Han F; Dong Z; Li B; Liu Z
    Nano Lett; 2018 Apr; 18(4):2475-2484. PubMed ID: 29565139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles.
    Pan X; Xie J; Li Z; Chen M; Wang M; Wang PN; Chen L; Mi L
    Colloids Surf B Biointerfaces; 2015 Jun; 130():292-8. PubMed ID: 25935263
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conquering the Hypoxia Limitation for Photodynamic Therapy.
    Wan Y; Fu LH; Li C; Lin J; Huang P
    Adv Mater; 2021 Dec; 33(48):e2103978. PubMed ID: 34580926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monodispersed CuSe Sensitized Covalent Organic Framework Photosensitizer with an Enhanced Photodynamic and Photothermal Effect for Cancer Therapy.
    Hu C; Zhang Z; Liu S; Liu X; Pang M
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23072-23082. PubMed ID: 31252509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hemin-incorporating DNA nanozyme enabling catalytic oxygenation and GSH depletion for enhanced photodynamic therapy and synergistic tumor ferroptosis.
    Xiao X; Chen M; Zhang Y; Li L; Peng Y; Li J; Zhou W
    J Nanobiotechnology; 2022 Sep; 20(1):410. PubMed ID: 36109814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioorthogonal chemistry and illumination controlled programmed size-changeable nanomedicine for synergistic photodynamic and hypoxia-activated therapy.
    Jiang M; Liu Y; Dong Y; Wang K; Yuan Y
    Biomaterials; 2022 May; 284():121480. PubMed ID: 35390710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fe
    Ma Z; Zhang M; Jia X; Bai J; Ruan Y; Wang C; Sun X; Jiang X
    Small; 2016 Oct; 12(39):5477-5487. PubMed ID: 27569525
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photodynamic therapy with smart nanomedicine.
    Kim J; Jo YU; Na K
    Arch Pharm Res; 2020 Jan; 43(1):22-31. PubMed ID: 31989479
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomimetic O
    Gao S; Zheng P; Li Z; Feng X; Yan W; Chen S; Guo W; Liu D; Yang X; Wang S; Liang XJ; Zhang J
    Biomaterials; 2018 Sep; 178():83-94. PubMed ID: 29913389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heavy-atomic construction of photosensitizer nanoparticles for enhanced photodynamic therapy of cancer.
    Lim CK; Shin J; Lee YD; Kim J; Park H; Kwon IC; Kim S
    Small; 2011 Jan; 7(1):112-8. PubMed ID: 21132707
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy.
    Wang Y; Xie Y; Li J; Peng ZH; Sheinin Y; Zhou J; Oupický D
    ACS Nano; 2017 Feb; 11(2):2227-2238. PubMed ID: 28165223
    [TBL] [Abstract][Full Text] [Related]  

  • 56. H
    Zeng Q; Zhang R; Zhang T; Xing D
    Biomaterials; 2019 Jul; 207():39-48. PubMed ID: 30953845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multifunctional Theranostic Liposomes Loaded with a Hypoxia-Activated Prodrug for Cascade-Activated Tumor Selective Combination Therapy.
    Dai Y; Wang B; Sun Z; Cheng J; Zhao H; Wu K; Sun P; Shen Q; Li M; Fan Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39410-39423. PubMed ID: 31578854
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power.
    Sun S; Chen J; Jiang K; Tang Z; Wang Y; Li Z; Liu C; Wu A; Lin H
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5791-5803. PubMed ID: 30648846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overcome the limitation of hypoxia against photodynamic therapy to treat cancer cells by using perfluorocarbon nanodroplet for photosensitizer delivery.
    Tang X; Cheng Y; Huang S; Zhi F; Yuan A; Hu Y; Wu J
    Biochem Biophys Res Commun; 2017 Jun; 487(3):483-487. PubMed ID: 28359763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hybrid Lipid Polymer Nanoparticles for Combined Chemo- and Photodynamic Therapy.
    N'Diaye M; Vergnaud-Gauduchon J; Nicolas V; Faure V; Denis S; Abreu S; Chaminade P; Rosilio V
    Mol Pharm; 2019 Sep; 16(9):4045-4058. PubMed ID: 31361499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.