BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30565460)

  • 1. Developing Consistent Molecular Dynamics Force Fields for Biological Chromophores via Force Matching.
    Claridge K; Troisi A
    J Phys Chem B; 2019 Jan; 123(2):428-438. PubMed ID: 30565460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.
    Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U
    J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches.
    Friedl C; Fedorov DG; Renger T
    Phys Chem Chem Phys; 2022 Feb; 24(8):5014-5038. PubMed ID: 35142765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.
    Rosnik AM; Curutchet C
    J Chem Theory Comput; 2015 Dec; 11(12):5826-37. PubMed ID: 26610205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher Order Vibronic Sidebands of Chlorophyll
    Rätsep M; Linnanto JM; Freiberg A
    J Phys Chem B; 2019 Aug; 123(33):7149-7156. PubMed ID: 31356081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
    Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF
    Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex.
    Kim Y; Morozov D; Stadnytskyi V; Savikhin S; Slipchenko LV
    J Phys Chem Lett; 2020 Mar; 11(5):1636-1643. PubMed ID: 32013435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multireference Excitation Energies for Bacteriochlorophylls A within Light Harvesting System 2.
    Anda A; Hansen T; De Vico L
    J Chem Theory Comput; 2016 Mar; 12(3):1305-13. PubMed ID: 26796483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein.
    Wen J; Zhang H; Gross ML; Blankenship RE
    Biochemistry; 2011 May; 50(17):3502-11. PubMed ID: 21449539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method.
    Kaliakin DS; Nakata H; Kim Y; Chen Q; Fedorov DG; Slipchenko LV
    J Chem Theory Comput; 2020 Feb; 16(2):1175-1187. PubMed ID: 31841349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral tuning of chlorophylls in proteins - electrostatics vs. ring deformation.
    Lahav Y; Noy D; Schapiro I
    Phys Chem Chem Phys; 2021 Mar; 23(11):6544-6551. PubMed ID: 33690760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Effects on the Excitation Energies and Exciton Dynamics of the CP24 Antenna Complex.
    Sarngadharan P; Holtkamp Y; Kleinekathöfer U
    J Phys Chem B; 2024 May; 128(21):5201-5217. PubMed ID: 38756003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface.
    Higashi M; Saito S
    J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water in Oil Emulsions: A New System for Assembling Water-soluble Chlorophyll-binding Proteins with Hydrophobic Pigments.
    Bednarczyk D; Noy D
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How the Protein Environment Can Tune the Energy, the Coupling, and the Ultrafast Dynamics of Interacting Chlorophylls: The Example of the Water-Soluble Chlorophyll Protein.
    Fresch E; Meneghin E; Agostini A; Paulsen H; Carbonera D; Collini E
    J Phys Chem Lett; 2020 Feb; 11(3):1059-1067. PubMed ID: 31952446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength-Dependent Exciton-Vibrational Coupling in the Water-Soluble Chlorophyll Binding Protein Revealed by Multilevel Theory of Difference Fluorescence Line-Narrowing.
    Adolphs J; Maier F; Renger T
    J Phys Chem B; 2018 Sep; 122(38):8891-8899. PubMed ID: 30183300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible Changes in the Structural Features of Photosynthetic Light-Harvesting Complex 2 by Removal and Reconstitution of B800 Bacteriochlorophyll a Pigments.
    Saga Y; Hirota K; Asakawa H; Takao K; Fukuma T
    Biochemistry; 2017 Jul; 56(27):3484-3491. PubMed ID: 28657308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles calculation of electronic spectra of light-harvesting complex II.
    König C; Neugebauer J
    Phys Chem Chem Phys; 2011 Jun; 13(22):10475-90. PubMed ID: 21369568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic Photophysics of Light-harvesting Charge-tagged Chlorophyll a and b Pigments.
    Gruber E; Kjaer C; Nielsen SB; Andersen LH
    Chemistry; 2019 Jul; 25(39):9153-9158. PubMed ID: 31095797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation energy trapping and dissipation by Ni-substituted bacteriochlorophyll a in reconstituted LH1 complexes from Rhodospirillum rubrum.
    Lambrev PH; Miloslavina Y; van Stokkum IH; Stahl AD; Michalik M; Susz A; Tworzydło J; Fiedor J; Huhn G; Groot ML; van Grondelle R; Garab G; Fiedor L
    J Phys Chem B; 2013 Sep; 117(38):11260-71. PubMed ID: 23837465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.