These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 30565899)
21. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. Cho SH; Lim SM; Han DK; Yuk SH; Im GI; Lee JH J Biomater Sci Polym Ed; 2009; 20(7-8):863-76. PubMed ID: 19454157 [TBL] [Abstract][Full Text] [Related]
22. The use of the mechanical microenvironment of phospholipid polymer hydrogels to control cell behavior. Oda H; Konno T; Ishihara K Biomaterials; 2013 Aug; 34(24):5891-6. PubMed ID: 23676454 [TBL] [Abstract][Full Text] [Related]
23. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering. LaNasa SM; Bryant SJ Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460 [TBL] [Abstract][Full Text] [Related]
24. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
25. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy. Wu Y; Wang L; Guo B; Ma PX ACS Nano; 2017 Jun; 11(6):5646-5659. PubMed ID: 28590127 [TBL] [Abstract][Full Text] [Related]
26. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration. Lee SY; Pereira BP; Yusof N; Selvaratnam L; Yu Z; Abbas AA; Kamarul T Acta Biomater; 2009 Jul; 5(6):1919-25. PubMed ID: 19289306 [TBL] [Abstract][Full Text] [Related]
27. Fabrication and characterization of phlorotannins/poly (vinyl alcohol) hydrogel for wound healing application. Park HH; Ko SC; Oh GW; Heo SJ; Kang DH; Bae SY; Jung WK J Biomater Sci Polym Ed; 2018; 29(7-9):972-983. PubMed ID: 28853319 [TBL] [Abstract][Full Text] [Related]
28. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. Gan S; Bai S; Chen C; Zou Y; Sun Y; Zhao J; Rong J Int J Biol Macromol; 2021 Jun; 181():418-425. PubMed ID: 33781814 [TBL] [Abstract][Full Text] [Related]
29. Bioactivity of permselective PVA hydrogels with mixed ECM analogues. Nafea EH; Poole-Warren LA; Martens PJ J Biomed Mater Res A; 2015 Dec; 103(12):3727-35. PubMed ID: 26014750 [TBL] [Abstract][Full Text] [Related]
30. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441 [TBL] [Abstract][Full Text] [Related]
31. [Porous polyvinyl alcohol hydrogel composite prepared and studied initially for biocompatibility]. Wu JQ; Liu Y; Yang TF; Mu YH; Guo T; Li YB Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Jul; 38(4):705-8, 724. PubMed ID: 17718447 [TBL] [Abstract][Full Text] [Related]
32. Biodegradable-Glass-Fiber Reinforced Hydrogel Composite with Enhanced Mechanical Performance and Cell Proliferation for Potential Cartilage Repair. Zhu C; Huang C; Zhang W; Ding X; Yang Y Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955850 [TBL] [Abstract][Full Text] [Related]
33. Design and characterization of an electroconductive scaffold for cardiomyocytes based biomedical assays. Parchehbaf-Kashani M; Sepantafar M; Talkhabi M; Sayahpour FA; Baharvand H; Pahlavan S; Rajabi S Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110603. PubMed ID: 32228891 [TBL] [Abstract][Full Text] [Related]
34. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway. Sun H; Tang J; Mou Y; Zhou J; Qu L; Duval K; Huang Z; Lin N; Dai R; Liang C; Chen Z; Tang L; Tian F Acta Biomater; 2017 Jan; 48():88-99. PubMed ID: 27769942 [TBL] [Abstract][Full Text] [Related]
35. Conductive hydrogels: mechanically robust hybrids for use as biomaterials. Green RA; Hassarati RT; Goding JA; Baek S; Lovell NH; Martens PJ; Poole-Warren LA Macromol Biosci; 2012 Apr; 12(4):494-501. PubMed ID: 22344960 [TBL] [Abstract][Full Text] [Related]
37. Preparation of P3HB4HB/(Gelatin + PVA) Composite Scaffolds by Coaxial Electrospinning and Its Biocompatibility Evaluation. Ma MX; Liu Q; Ye C; Grottkau B; Guo B; Song YF Biomed Res Int; 2017; 2017():9251806. PubMed ID: 29349086 [TBL] [Abstract][Full Text] [Related]
38. [The appraisal of mechanical properties and friction coefficient of PVA hydro-gel]. Chen L; Zhang D; Zhang J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct; 26(5):1021-4. PubMed ID: 19947481 [TBL] [Abstract][Full Text] [Related]
39. Thermosensitive and Highly Flexible Hydrogels Capable of Stimulating Cardiac Differentiation of Cardiosphere-Derived Cells under Static and Dynamic Mechanical Training Conditions. Li Z; Fan Z; Xu Y; Niu H; Xie X; Liu Z; Guan J ACS Appl Mater Interfaces; 2016 Jun; 8(25):15948-57. PubMed ID: 27281488 [TBL] [Abstract][Full Text] [Related]
40. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Cui Z; Ni NC; Wu J; Du GQ; He S; Yau TM; Weisel RD; Sung HW; Li RK Theranostics; 2018; 8(10):2752-2764. PubMed ID: 29774073 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]