These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30565939)

  • 21. Passive Sampling Tool for Actinides in Spent Nuclear Fuel Pools.
    Chaplin JD; Christl M; Straub M; Bochud F; Froidevaux P
    ACS Omega; 2022 Jun; 7(23):20053-20058. PubMed ID: 35722008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preliminary Assessment of Criticality Safety Constraints for Swiss Spent Nuclear Fuel Loading in Disposal Canisters.
    Vasiliev A; Herrero J; Pecchia M; Rochman D; Ferroukhi H; Caruso S
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30764572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and dynamics of uranyl(VI) and plutonyl(VI) cations in ionic liquid/water mixtures via molecular dynamics simulations.
    Maerzke KA; Goff GS; Runde WH; Schneider WF; Maginn EJ
    J Phys Chem B; 2013 Sep; 117(37):10852-68. PubMed ID: 23964666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Microstructure and Surface Defects on the Dissolution Kinetics of CeO2, a UO2 Fuel Analogue.
    Corkhill CL; Bailey DJ; Tocino FY; Stennett MC; Miller JA; Provis JL; Travis KP; Hyatt NC
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10562-71. PubMed ID: 27022662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool.
    Huang CP; Lin TY; Chiao LH; Chen HB
    J Hazard Mater; 2012 Sep; 233-234():140-7. PubMed ID: 22841295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion sieving in graphene oxide membrane enables efficient actinides/lanthanides separation.
    Wang Z; Huang L; Dong X; Wu T; Qing Q; Chen J; Lu Y; Xu C
    Nat Commun; 2023 Jan; 14(1):261. PubMed ID: 36650148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new approach to determine 147Pm in irradiated fuel solutions.
    Brennetot R; Stadelmann G; Caussignac C; Gombert C; Fouque M; Lamouroux C
    Talanta; 2009 May; 78(3):676-81. PubMed ID: 19269411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbeam x-ray absorption spectroscopy study of chromium in large-grain uranium dioxide fuel.
    Mieszczynski C; Kuri G; Bertsch J; Martin M; Borca CN; Delafoy Ch; Simoni E
    J Phys Condens Matter; 2014 Sep; 26(35):355009. PubMed ID: 25109302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications.
    Mohapatra PK
    Dalton Trans; 2017 Feb; 46(6):1730-1747. PubMed ID: 28138685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressurized water reactor spent nuclear fuel data library produced with the Serpent2 code.
    Elter Z; Balkeståhl LP; Branger E; Grape S
    Data Brief; 2020 Dec; 33():106429. PubMed ID: 33134449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate.
    Zhu L; Duan W; Xu J; Zhu Y
    J Hazard Mater; 2012 Nov; 241-242():456-62. PubMed ID: 23089063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient extraction and selective separation of uranium (VI) from transition metals using new class of undiluted ionic liquids based on H-phosphonate anions.
    Zarrougui R; Mdimagh R; Raouafi N
    J Hazard Mater; 2018 Jan; 342():464-476. PubMed ID: 28865257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precise U and Pu Isotope Ratio Measurements in Nuclear Samples by Hyphenating Capillary Electrophoresis and MC-ICPMS.
    Martelat B; Isnard H; Vio L; Dupuis E; Cornet T; Nonell A; Chartier F
    Anal Chem; 2018 Jul; 90(14):8622-8628. PubMed ID: 29929369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of tertiary pyridine resin for the separation of lanthanides by simulated moving-bed chromatography.
    Sreedhar B; Suzuki T; Hobbs DT; Kawajiri Y
    J Sep Sci; 2014 Oct; 37(20):2892-9. PubMed ID: 25088396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isotopic evidence of natural uranium and spent fuel uranium releases into the environment.
    Pourcelot L; Boulet B; Le Corre C; Loyen J; Fayolle C; Tournieux D; Van Hecke W; Martinez B; Petit J
    J Environ Monit; 2011 Feb; 13(2):355-61. PubMed ID: 21132170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential applications of sonochemistry in spent nuclear fuel reprocessing: a short review.
    Nikitenko SI; Venault L; Pflieger R; Chave T; Bisel I; Moisy P
    Ultrason Sonochem; 2010 Aug; 17(6):1033-40. PubMed ID: 20022548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of the SCK CEN reference datasets for spent fuel safeguards research and development.
    Rossa R; Borella A
    Data Brief; 2020 Jun; 30():105462. PubMed ID: 32300625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.
    Bobrowski K; Skotnicki K; Szreder T
    Top Curr Chem (Cham); 2016 Oct; 374(5):60. PubMed ID: 27573502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High wettability of liquid caesium iodine with solid uranium dioxide.
    Kurosaki K; Suzuki M; Uno M; Ishii H; Kumagai M; Anada K; Murakami Y; Ohishi Y; Muta H; Tanaka T; Yamanaka S
    Sci Rep; 2017 Sep; 7(1):11449. PubMed ID: 28904389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.