BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30566037)

  • 1. Local, transient tensile stress on the nuclear membrane causes membrane rupture.
    Zhang Q; Tamashunas AC; Agrawal A; Torbati M; Katiyar A; Dickinson RB; Lammerding J; Lele TP
    Mol Biol Cell; 2019 Mar; 30(7):899-906. PubMed ID: 30566037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simian virus 40 induces lamin A/C fluctuations and nuclear envelope deformation during cell entry.
    Butin-Israeli V; Ben-nun-Shaul O; Kopatz I; Adam SA; Shimi T; Goldman RD; Oppenheim A
    Nucleus; 2011; 2(4):320-30. PubMed ID: 21941111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaussian curvature dilutes the nuclear lamina, favoring nuclear rupture, especially at high strain rate.
    Pfeifer CR; Tobin MP; Cho S; Vashisth M; Dooling LJ; Vazquez LL; Ricci-De Lucca EG; Simon KT; Discher DE
    Nucleus; 2022 Dec; 13(1):129-143. PubMed ID: 35293271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death.
    Chen NY; Yang Y; Weston TA; Belling JN; Heizer P; Tu Y; Kim P; Edillo L; Jonas SJ; Weiss PS; Fong LG; Young SG
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25870-25879. PubMed ID: 31796586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated increase of nuclear tension and lamin-A with matrix stiffness outcompetes lamin-B receptor that favors soft tissue phenotypes.
    Buxboim A; Irianto J; Swift J; Athirasala A; Shin JW; Rehfeldt F; Discher DE
    Mol Biol Cell; 2017 Nov; 28(23):3333-3348. PubMed ID: 28931598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Nucleus Bypasses Obstacles by Deforming Like a Drop with Surface Tension Mediated by Lamin A/C.
    Katiyar A; Zhang J; Antani JD; Yu Y; Scott KL; Lele PP; Reinhart-King CA; Sniadecki NJ; Roux KJ; Dickinson RB; Lele TP
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201248. PubMed ID: 35712768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution of lamin A/C determines nuclear stiffness and stress-mediated deformation.
    Srivastava LK; Ju Z; Ghagre A; Ehrlicher AJ
    J Cell Sci; 2021 May; 134(10):. PubMed ID: 34028539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins.
    Zwerger M; Roschitzki-Voser H; Zbinden R; Denais C; Herrmann H; Lammerding J; Grütter MG; Medalia O
    J Cell Sci; 2015 Oct; 128(19):3607-20. PubMed ID: 26275827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear failure, DNA damage, and cell cycle disruption after migration through small pores: a brief review.
    Pfeifer CR; Vashisth M; Xia Y; Discher DE
    Essays Biochem; 2019 Oct; 63(5):569-577. PubMed ID: 31366473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminopathies: what can humans learn from fruit flies.
    Pałka M; Tomczak A; Grabowska K; Machowska M; Piekarowicz K; Rzepecka D; Rzepecki R
    Cell Mol Biol Lett; 2018; 23():32. PubMed ID: 30002683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis.
    Broers JL; Bronnenberg NM; Kuijpers HJ; Schutte B; Hutchison CJ; Ramaekers FC
    Eur J Cell Biol; 2002 Dec; 81(12):677-91. PubMed ID: 12553668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The lamin CxxM motif promotes nuclear membrane growth.
    Prüfert K; Vogel A; Krohne G
    J Cell Sci; 2004 Dec; 117(Pt 25):6105-16. PubMed ID: 15546914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic properties of germ line-specific lamin B3: the role of the shortened rod domain.
    Schütz W; Benavente R; Alsheimer M
    Eur J Cell Biol; 2005 Jul; 84(7):649-62. PubMed ID: 16106909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application.
    Qi YX; Yao QP; Huang K; Shi Q; Zhang P; Wang GL; Han Y; Bao H; Wang L; Li HP; Shen BR; Wang Y; Chien S; Jiang ZL
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5293-8. PubMed ID: 27114541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear envelope rupture and NET formation is driven by PKCα-mediated lamin B disassembly.
    Li Y; Li M; Weigel B; Mall M; Werth VP; Liu ML
    EMBO Rep; 2020 Aug; 21(8):e48779. PubMed ID: 32537912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular stress induces Bax-regulated nuclear bubble budding and rupture followed by nuclear protein release.
    Lindenboim L; Sasson T; Worman HJ; Borner C; Stein R
    Nucleus; 2014; 5(6):527-41. PubMed ID: 25482068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear envelope remodelling during human spermiogenesis involves somatic B-type lamins and a spermatid-specific B3 lamin isoform.
    Elkhatib R; Longepied G; Paci M; Achard V; Grillo JM; Levy N; Mitchell MJ; Metzler-Guillemain C
    Mol Hum Reprod; 2015 Mar; 21(3):225-36. PubMed ID: 25477337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of the cell nucleus and the effect of emerin deficiency.
    Rowat AC; Lammerding J; Ipsen JH
    Biophys J; 2006 Dec; 91(12):4649-64. PubMed ID: 16997877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA damage induces nuclear envelope rupture through ATR-mediated phosphorylation of lamin A/C.
    Kovacs MT; Vallette M; Wiertsema P; Dingli F; Loew D; Nader GPF; Piel M; Ceccaldi R
    Mol Cell; 2023 Oct; 83(20):3659-3668.e10. PubMed ID: 37832547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration.
    Cao X; Moeendarbary E; Isermann P; Davidson PM; Wang X; Chen MB; Burkart AK; Lammerding J; Kamm RD; Shenoy VB
    Biophys J; 2016 Oct; 111(7):1541-1552. PubMed ID: 27705776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.