These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 30566049)
21. Negative action of hepatocyte growth factor/c-Met system on angiotensin II signaling via ligand-dependent epithelial growth factor receptor degradation mechanism in vascular smooth muscle cells. Sanada F; Taniyama Y; Iekushi K; Azuma J; Okayama K; Kusunoki H; Koibuchi N; Doi T; Aizawa Y; Morishita R Circ Res; 2009 Sep; 105(7):667-75, 13 p following 675. PubMed ID: 19713535 [TBL] [Abstract][Full Text] [Related]
22. [Research progress on the role of non-coding RNA in the functional regulation of vascular smooth muscle cells]. Rong ZH; Ni L; Zhang R; Niu S; Li FS; Liu CW Zhonghua Xin Xue Guan Bing Za Zhi; 2023 May; 51(5):535-541. PubMed ID: 37198127 [TBL] [Abstract][Full Text] [Related]
23. Expression of a Novel Long Noncoding RNA (lncRNA), GASL1, is Downregulated in Patients with Intracranial Aneurysms and Regulates the Proliferation of Vascular Smooth Muscle Cells In Vitro. Man H; Bi W Med Sci Monit; 2019 Feb; 25():1133-1139. PubMed ID: 30742604 [TBL] [Abstract][Full Text] [Related]
24. Egg White-Derived Antihypertensive Peptide IRW (Ile-Arg-Trp) Inhibits Angiotensin II-Stimulated Migration of Vascular Smooth Muscle Cells via Angiotensin Type I Receptor. Liao W; Fan H; Wu J J Agric Food Chem; 2018 May; 66(20):5133-5138. PubMed ID: 29714061 [TBL] [Abstract][Full Text] [Related]
26. LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism. Liu Y; Sun Z; Zhu J; Xiao B; Dong J; Li X J Cell Physiol; 2018 Jun; 233(6):4801-4814. PubMed ID: 29150946 [TBL] [Abstract][Full Text] [Related]
27. Peroxisome proliferator-activated receptor-γ mutations responsible for lipodystrophy with severe hypertension activate the cellular renin-angiotensin system. Auclair M; Vigouroux C; Boccara F; Capel E; Vigeral C; Guerci B; Lascols O; Capeau J; Caron-Debarle M Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):829-38. PubMed ID: 23393388 [TBL] [Abstract][Full Text] [Related]
28. Fingerprint of long non-coding RNA regulated by cyclic mechanical stretch in human aortic smooth muscle cells: implications for hypertension. Mantella LE; Singh KK; Sandhu P; Kantores C; Ramadan A; Khyzha N; Quan A; Al-Omran M; Fish JE; Jankov RP; Verma S Mol Cell Biochem; 2017 Nov; 435(1-2):163-173. PubMed ID: 28526936 [TBL] [Abstract][Full Text] [Related]
29. Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators. Yu CK; Xu T; Assoian RK; Rader DJ Arterioscler Thromb Vasc Biol; 2018 Jan; 38(1):164-173. PubMed ID: 29051139 [TBL] [Abstract][Full Text] [Related]
30. Long Non-Coding RNA MEG3 Downregulation Triggers Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via the p53 Signaling Pathway. Sun Z; Nie X; Sun S; Dong S; Yuan C; Li Y; Xiao B; Jie D; Liu Y Cell Physiol Biochem; 2017; 42(6):2569-2581. PubMed ID: 28848087 [TBL] [Abstract][Full Text] [Related]
31. Functional Long Non-coding RNAs in Vascular Smooth Muscle Cells. Leung A; Stapleton K; Natarajan R Curr Top Microbiol Immunol; 2016; 394():127-41. PubMed ID: 25910717 [TBL] [Abstract][Full Text] [Related]
32. miR-185/P2Y6 Axis Inhibits Angiotensin II-Induced Human Aortic Vascular Smooth Muscle Cell Proliferation. Wang S; Tang L; Zhou Q; Lu D; Duan W; Chen C; Huang L; Tan Y DNA Cell Biol; 2017 May; 36(5):377-385. PubMed ID: 28277742 [TBL] [Abstract][Full Text] [Related]
33. Activation of PPARδ counteracts angiotensin II-induced ROS generation by inhibiting rac1 translocation in vascular smooth muscle cells. Lee H; Ham SA; Kim MY; Kim JH; Paek KS; Kang ES; Kim HJ; Hwang JS; Yoo T; Park C; Kim JH; Lim DS; Han CW; Seo HG Free Radic Res; 2012 Jul; 46(7):912-9. PubMed ID: 22519881 [TBL] [Abstract][Full Text] [Related]
34. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955 [TBL] [Abstract][Full Text] [Related]
36. Expression of endothelial lipase correlates with the size of neointima in a murine model of vascular remodeling. Sun L; Ishida T; Okada T; Yasuda T; Hara T; Toh R; Shinohara M; Yamashita T; Rikitake Y; Hirata K J Atheroscler Thromb; 2012; 19(12):1110-27. PubMed ID: 22972429 [TBL] [Abstract][Full Text] [Related]
37. Phospholipase Cγ1 Mediates Intima Formation Through Akt-Notch1 Signaling Independent of the Phospholipase Activity. Jiang D; Zhuang J; Peng W; Lu Y; Liu H; Zhao Q; Chi C; Li X; Zhu G; Xu X; Yan C; Xu Y; Ge J; Pang J J Am Heart Assoc; 2017 Jul; 6(7):. PubMed ID: 28698260 [TBL] [Abstract][Full Text] [Related]
39. Oxidation Prevents HMGB1 Inhibition on PDGF-Induced Differentiation of Multipotent Vascular Stem Cells to Smooth Muscle Cells: A Possible Mechanism Linking Oxidative Stress to Atherosclerosis. Meng X; Su W; Tao X; Sun M; Ying R; Wei W; Wang B Biomed Res Int; 2018; 2018():4019814. PubMed ID: 29951536 [TBL] [Abstract][Full Text] [Related]
40. Angiotensin II induces proliferation of human cerebral artery smooth muscle cells through a basic fibroblast growth factor (bFGF) dependent mechanism. Wang Z; Rao PJ; Shillcutt SD; Newman WH Neurosci Lett; 2005 Jan; 373(1):38-41. PubMed ID: 15555773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]