These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30566158)

  • 1. Dynamic control of capillary flow in porous media by electroosmotic pumping.
    Rosenfeld T; Bercovici M
    Lab Chip; 2019 Jan; 19(2):328-334. PubMed ID: 30566158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels.
    Giokas DL; Tsogas GZ; Vlessidis AG
    Anal Chem; 2014 Jul; 86(13):6202-7. PubMed ID: 24915155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayered Microfluidic Paper-Based Devices: Characterization, Modeling, and Perspectives.
    Channon RB; Nguyen MP; Henry CS; Dandy DS
    Anal Chem; 2019 Jul; 91(14):8966-8972. PubMed ID: 31276368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing fluid delivered by bubble-free electroosmotic pump with optimum pulse voltage waveform.
    Tawfik ME; Diez FJ
    Electrophoresis; 2017 Mar; 38(5):563-571. PubMed ID: 27859425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary pumping independent of the liquid surface energy and viscosity.
    Guo W; Hansson J; van der Wijngaart W
    Microsyst Nanoeng; 2018; 4():2. PubMed ID: 31057892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A handy liquid metal based electroosmotic flow pump.
    Gao M; Gui L
    Lab Chip; 2014 Jun; 14(11):1866-72. PubMed ID: 24706096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paper-based energy harvesting from salinity gradients.
    Chang HK; Choi E; Park J
    Lab Chip; 2016 Feb; 16(4):700-8. PubMed ID: 26768119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary Pumping Independent of Liquid Sample Viscosity.
    Guo W; Hansson J; van der Wijngaart W
    Langmuir; 2016 Dec; 32(48):12650-12655. PubMed ID: 27798835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices.
    Resto PJ; Berthier E; Beebe DJ; Williams JC
    Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow.
    Johnson TJ; Locascio LE
    Lab Chip; 2002 Aug; 2(3):135-40. PubMed ID: 15100823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance versus Capillary Flow Dynamics-Based Detection Methods on a Microfluidic Paper-Based Analytical Device (μPAD).
    Chung S; Jennings CM; Yoon JY
    Chemistry; 2019 Oct; 25(57):13070-13077. PubMed ID: 31157465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A periodic array of nano-scale parallel slats for high-efficiency electroosmotic pumping.
    Kung CF; Wang CY; Chang CC
    Electrophoresis; 2013 Dec; 34(22-23):3133-40. PubMed ID: 24105905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Behavior of Alumina Nanotube-Based Pathways within Hydrophobic CNT Barriers.
    Aksu C; Bradford PD; Jur JS
    Langmuir; 2020 Aug; 36(30):8792-8799. PubMed ID: 32663010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous glass electroosmotic pumps: design and experiments.
    Yao S; Hertzog DE; Zeng S; Mikkelsen JC; Santiago JG
    J Colloid Interface Sci; 2003 Dec; 268(1):143-53. PubMed ID: 14611783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Electrically Driven Capillary Rise Using Overdrive Voltage.
    Hong SJ; Hong J; Seo HW; Lee SJ; Chung SK
    Langmuir; 2015 Dec; 31(51):13718-24. PubMed ID: 26641954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous glass electroosmotic pumps: theory.
    Yao S; Santiago JG
    J Colloid Interface Sci; 2003 Dec; 268(1):133-42. PubMed ID: 14611782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-voltage nano-porous electroosmotic pump.
    Ai Y; Yalcin SE; Gu D; Baysal O; Baumgart H; Qian S; Beskok A
    J Colloid Interface Sci; 2010 Oct; 350(2):465-70. PubMed ID: 20684961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates.
    Mohammadi S; Busa LS; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Anal Bioanal Chem; 2016 Nov; 408(27):7559-7563. PubMed ID: 27544520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniaturised medium pressure capillary liquid chromatography system with flexible open platform design using off-the-shelf microfluidic components.
    Li Y; Dvořák M; Nesterenko PN; Stanley R; Nuchtavorn N; Krčmová LK; Aufartová J; Macka M
    Anal Chim Acta; 2015 Oct; 896():166-76. PubMed ID: 26482001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks.
    Nuchtavorn N; Macka M
    Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.