These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30566285)

  • 1. Models of polymer physics for the architecture of the cell nucleus.
    Esposito A; Annunziatella C; Bianco S; Chiariello AM; Fiorillo L; Nicodemi M
    Wiley Interdiscip Rev Syst Biol Med; 2019 Jul; 11(4):e1444. PubMed ID: 30566285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational approaches from polymer physics to investigate chromatin folding.
    Bianco S; Chiariello AM; Conte M; Esposito A; Fiorillo L; Musella F; Nicodemi M
    Curr Opin Cell Biol; 2020 Jun; 64():10-17. PubMed ID: 32045823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin folding--from biology to polymer models and back.
    Tark-Dame M; van Driel R; Heermann DW
    J Cell Sci; 2011 Mar; 124(Pt 6):839-45. PubMed ID: 21378305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A polymer model explains the complexity of large-scale chromatin folding.
    Barbieri M; Fraser J; Lavitas LM; Chotalia M; Dostie J; Pombo A; Nicodemi M
    Nucleus; 2013; 4(4):267-73. PubMed ID: 23823730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-Based Polymer Models to Probe Chromosome Structure in Single Molecules.
    Conte M; Chiariello AM; Bianco S; Esposito A; Abraham A; Nicodemi M
    Methods Mol Biol; 2023; 2655():57-66. PubMed ID: 37212988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics simulations of the Strings and Binders Switch model of chromatin.
    Annunziatella C; Chiariello AM; Esposito A; Bianco S; Fiorillo L; Nicodemi M
    Methods; 2018 Jun; 142():81-88. PubMed ID: 29522804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the Machinery behind Chromosome Folding by Polymer Physics Modeling.
    Conte M; Esposito A; Vercellone F; Abraham A; Bianco S
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome organization via loop extrusion, insights from polymer physics models.
    Ghosh SK; Jost D
    Brief Funct Genomics; 2020 Mar; 19(2):119-127. PubMed ID: 31711163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer models are a versatile tool to study chromatin 3D organization.
    Esposito A; Bianco S; Fiorillo L; Conte M; Abraham A; Musella F; Nicodemi M; Prisco A; Chiariello AM
    Biochem Soc Trans; 2021 Aug; 49(4):1675-1684. PubMed ID: 34282837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical mechanisms of chromatin spatial organization.
    Chiariello AM; Bianco S; Esposito A; Fiorillo L; Conte M; Irani E; Musella F; Abraham A; Prisco A; Nicodemi M
    FEBS J; 2022 Mar; 289(5):1180-1190. PubMed ID: 33583147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer physics indicates chromatin folding variability across single-cells results from state degeneracy in phase separation.
    Conte M; Fiorillo L; Bianco S; Chiariello AM; Esposito A; Nicodemi M
    Nat Commun; 2020 Jul; 11(1):3289. PubMed ID: 32620890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of the large-scale organization of chromatin.
    Barbieri M; Chotalia M; Fraser J; Lavitas LM; Dostie J; Pombo A; Nicodemi M
    Biochem Soc Trans; 2013 Apr; 41(2):508-12. PubMed ID: 23514144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer physics predicts the effects of structural variants on chromatin architecture.
    Bianco S; Lupiáñez DG; Chiariello AM; Annunziatella C; Kraft K; Schöpflin R; Wittler L; Andrey G; Vingron M; Pombo A; Mundlos S; Nicodemi M
    Nat Genet; 2018 May; 50(5):662-667. PubMed ID: 29662163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin organization - the 30 nm fiber.
    Grigoryev SA; Woodcock CL
    Exp Cell Res; 2012 Jul; 318(12):1448-55. PubMed ID: 22394510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer physics of chromosome large-scale 3D organisation.
    Chiariello AM; Annunziatella C; Bianco S; Esposito A; Nicodemi M
    Sci Rep; 2016 Jul; 6():29775. PubMed ID: 27405443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Models of chromosome structure.
    Nicodemi M; Pombo A
    Curr Opin Cell Biol; 2014 Jun; 28():90-5. PubMed ID: 24804566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer perspective of genome mobilization.
    Lawrimore CJ; Lawrimore J; He Y; Chavez S; Bloom K
    Mutat Res; 2020; 821():111706. PubMed ID: 32516654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer models for the mechanisms of chromatin 3D folding: review and perspective.
    Zhou R; Gao YQ
    Phys Chem Chem Phys; 2020 Sep; 22(36):20189-20201. PubMed ID: 32966415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer Physics of the Large-Scale Structure of Chromatin.
    Bianco S; Chiariello AM; Annunziatella C; Esposito A; Nicodemi M
    Methods Mol Biol; 2016; 1480():201-6. PubMed ID: 27659986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding.
    Conte M; Irani E; Chiariello AM; Abraham A; Bianco S; Esposito A; Nicodemi M
    Nat Commun; 2022 Jul; 13(1):4070. PubMed ID: 35831310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.