These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30566285)

  • 21. Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture.
    Huet S; Lavelle C; Ranchon H; Carrivain P; Victor JM; Bancaud A
    Int Rev Cell Mol Biol; 2014; 307():443-79. PubMed ID: 24380602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complexity of chromatin folding is captured by the strings and binders switch model.
    Barbieri M; Chotalia M; Fraser J; Lavitas LM; Dostie J; Pombo A; Nicodemi M
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16173-8. PubMed ID: 22988072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Higher-order chromatin structure: bridging physics and biology.
    Fudenberg G; Mirny LA
    Curr Opin Genet Dev; 2012 Apr; 22(2):115-24. PubMed ID: 22360992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inference of chromosome 3D structures from GAM data by a physics computational approach.
    Fiorillo L; Bianco S; Chiariello AM; Barbieri M; Esposito A; Annunziatella C; Conte M; Corrado A; Prisco A; Pombo A; Nicodemi M
    Methods; 2020 Oct; 181-182():70-79. PubMed ID: 31604121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Higher-order Chromosome Structures Investigated by Polymer Physics in Cellular Morphogenesis and Differentiation.
    Esposito A; Chiariello AM; Conte M; Fiorillo L; Musella F; Sciarretta R; Bianco S
    J Mol Biol; 2020 Feb; 432(3):701-711. PubMed ID: 31863751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymer models of the hierarchical folding of the Hox-B chromosomal locus.
    Annunziatella C; Chiariello AM; Bianco S; Nicodemi M
    Phys Rev E; 2016 Oct; 94(4-1):042402. PubMed ID: 27841585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymer physics reveals a combinatorial code linking 3D chromatin architecture to 1D chromatin states.
    Esposito A; Bianco S; Chiariello AM; Abraham A; Fiorillo L; Conte M; Campanile R; Nicodemi M
    Cell Rep; 2022 Mar; 38(13):110601. PubMed ID: 35354035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How to build a yeast nucleus.
    Wong H; Arbona JM; Zimmer C
    Nucleus; 2013; 4(5):361-6. PubMed ID: 23974728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The biology and polymer physics underlying large-scale chromosome organization.
    Sazer S; Schiessel H
    Traffic; 2018 Feb; 19(2):87-104. PubMed ID: 29105235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromosome conformation by crosslinking: polymer physics matters.
    Langowski J
    Nucleus; 2010; 1(1):37-9. PubMed ID: 21327103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural organization of dynamic chromatin.
    Hizume K; Yoshimura SH; Kumeta M; Takeyasu K
    Subcell Biochem; 2007; 41():3-28. PubMed ID: 17484121
    [No Abstract]   [Full Text] [Related]  

  • 33. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformation regulation of the X chromosome inactivation center: a model.
    Scialdone A; Cataudella I; Barbieri M; Prisco A; Nicodemi M
    PLoS Comput Biol; 2011 Oct; 7(10):e1002229. PubMed ID: 22046112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting chromatin architecture from models of polymer physics.
    Bianco S; Chiariello AM; Annunziatella C; Esposito A; Nicodemi M
    Chromosome Res; 2017 Mar; 25(1):25-34. PubMed ID: 28070687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coupling 1D modifications and 3D nuclear organization: data, models and function.
    Jost D; Vaillant C; Meister P
    Curr Opin Cell Biol; 2017 Feb; 44():20-27. PubMed ID: 28040646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic and equilibrium properties of finite-size polymer models of chromosome folding.
    Conte M; Fiorillo L; Annunziatella C; Esposito A; Musella F; Abraham A; Bianco S; Chiariello AM
    Phys Rev E; 2021 Nov; 104(5-1):054402. PubMed ID: 34942797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations.
    Arbona JM; Herbert S; Fabre E; Zimmer C
    Genome Biol; 2017 May; 18(1):81. PubMed ID: 28468672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic chromatin loops bridge health and disease in the nuclear landscape.
    Göndör A
    Semin Cancer Biol; 2013 Apr; 23(2):90-8. PubMed ID: 23376421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.