BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30566913)

  • 1. A novel phantom for characterization of dual energy imaging using an on-board imaging system.
    Haytmyradov M; Patel R; Mostafavi H; Surucu M; Wang A; Harkenrider MM; Roeske JC
    Phys Med Biol; 2019 Jan; 64(3):03NT01. PubMed ID: 30566913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive noise reduction for dual-energy x-ray imaging based on spatial variations in beam attenuation.
    Romadanov I; Sattarivand M
    Phys Med Biol; 2020 Dec; 65(24):245023. PubMed ID: 32554889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal-difference-to-noise comparison of temporal subtraction, kV-switching dual-energy and photon-counting dual-energy x-ray angiography.
    Aubert S; Tanguay J
    Med Phys; 2023 Dec; 50(12):7400-7414. PubMed ID: 37877679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing dual-energy x-ray parameters for the ExacTrac clinical stereoscopic imaging system to enhance soft-tissue imaging.
    Bowman WA; Robar JL; Sattarivand M
    Med Phys; 2017 Mar; 44(3):823-831. PubMed ID: 28060412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markerless tumor tracking using fast-kV switching dual-energy fluoroscopy on a benchtop system.
    Haytmyradov M; Mostafavi H; Wang A; Zhu L; Surucu M; Patel R; Ganguly A; Richmond M; Cassetta R; Harkenrider MM; Roeske JC
    Med Phys; 2019 Jul; 46(7):3235-3244. PubMed ID: 31059124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive weighted log subtraction based on neural networks for markerless tumor tracking using dual-energy fluoroscopy.
    Haytmyradov M; Mostafavi H; Cassetta R; Patel R; Surucu M; Zhu L; Roeske JC
    Med Phys; 2020 Feb; 47(2):672-680. PubMed ID: 31797397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-specific pixel-based weighting factor dual-energy x-ray imaging system using a priori CT data.
    Darvish-Molla S; Reno MC; Sattarivand M
    Med Phys; 2019 Feb; 46(2):528-543. PubMed ID: 30582871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive dual-energy algorithm based on pre-calibrated weighting factors for chest radiography.
    Romadanov I; Abeywardhana R; Sattarivand M
    Phys Med Biol; 2022 Apr; 67(9):. PubMed ID: 35349999
    [No Abstract]   [Full Text] [Related]  

  • 9. Dual energy imaging using a clinical on-board imaging system.
    Hoggarth MA; Luce J; Syeda F; Bray TS; Block A; Nagda S; Roeske JC
    Phys Med Biol; 2013 Jun; 58(12):4331-40. PubMed ID: 23732651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of scattered megavoltage x-rays on markerless tumor tracking using dual energy kilovoltage imaging.
    Kaur M; Luce J; Lehmann M; Morf D; Zhu L; Kang H; Walczak M; Harkenrider MM; Roeske JC
    J Appl Clin Med Phys; 2023 Aug; 24(8):e13993. PubMed ID: 37071500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of image quality for real-time target tracking using simultaneous kV-MV imaging.
    Luo W; Yoo S; Wu QJ; Wang Z; Yin FF
    Med Phys; 2008 Dec; 35(12):5501-9. PubMed ID: 19175109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of different noise reduction techniques and template matching parameters on markerless tumor tracking using dual-energy imaging.
    Kaur M; Wagstaff P; Mostafavi H; Lehmann M; Morf D; Zhu L; Kang H; Walczak M; Harkenrider MM; Roeske JC
    J Appl Clin Med Phys; 2022 Dec; 23(12):e13821. PubMed ID: 36350280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of image acquisition techniques for dual-energy imaging of the chest.
    Shkumat NA; Siewerdsen JH; Dhanantwari AC; Williams DB; Richard S; Paul NS; Yorkston J; Van Metter R
    Med Phys; 2007 Oct; 34(10):3904-15. PubMed ID: 17985636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SU-E-J-44: Dual Energy Subtraction Imaging to Improve Tumor Visibility at Oblique Angles.
    Hoggarth M; Luce J; Bray T; Block A; Roeske J
    Med Phys; 2012 Jun; 39(6Part6):3662. PubMed ID: 28517599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical Note: Estimation of lung tumor thickness from planar dual-energy kV images.
    Jung F; Patel R; Campana M; Panfil J; Pankuch M; Roeske JC
    Med Phys; 2015 Sep; 42(9):5055-9. PubMed ID: 26328956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Markerless Tumor Tracking Using the On-Board Imager of a Commercial Linear Accelerator Equipped With Fast-kV Switching Dual-Energy Imaging.
    Roeske JC; Mostafavi H; Haytmyradov M; Wang A; Morf D; Cortesi L; Surucu M; Patel R; Cassetta R; Zhu L; Lehmann M; Harkenrider MM
    Adv Radiat Oncol; 2020; 5(5):1006-1013. PubMed ID: 33089019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.
    Menten MJ; Fast MF; Nill S; Oelfke U
    Med Phys; 2015 Dec; 42(12):6987-98. PubMed ID: 26632054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral imaging using clinical megavoltage beams and a novel multi-layer imager.
    Myronakis M; Fueglistaller R; Rottmann J; Hu YH; Wang A; Baturin P; Huber P; Morf D; Star-Lack J; Berbeco R
    Phys Med Biol; 2017 Nov; 62(23):9127-9139. PubMed ID: 29053107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and validation of a MV/kV imaging-based markerless tracking system for assessing real-time lung tumor motion.
    Zhang P; Hunt M; Telles AB; Pham H; Lovelock M; Yorke E; Li G; Happersett L; Rimner A; Mageras G
    Med Phys; 2018 Dec; 45(12):5555-5563. PubMed ID: 30362124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.