These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 30567363)
1. A Microfluidic Spheroid Culture Device with a Concentration Gradient Generator for High-Throughput Screening of Drug Efficacy. Lim W; Park S Molecules; 2018 Dec; 23(12):. PubMed ID: 30567363 [TBL] [Abstract][Full Text] [Related]
2. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator. Lee Y; Chen Z; Lim W; Cho H; Park S Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205 [TBL] [Abstract][Full Text] [Related]
3. Digital microfluidics for automated hanging drop cell spheroid culture. Aijian AP; Garrell RL J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471 [TBL] [Abstract][Full Text] [Related]
4. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Mulholland T; McAllister M; Patek S; Flint D; Underwood M; Sim A; Edwards J; Zagnoni M Sci Rep; 2018 Oct; 8(1):14672. PubMed ID: 30279484 [TBL] [Abstract][Full Text] [Related]
5. Establishment of Microfluidic Spheroid Cultures for Biomedical Applications. Kwapiszewska K Methods Mol Biol; 2018; 1771():213-224. PubMed ID: 29633216 [TBL] [Abstract][Full Text] [Related]
6. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664 [TBL] [Abstract][Full Text] [Related]
7. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188 [TBL] [Abstract][Full Text] [Related]
8. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Sirenko O; Mitlo T; Hesley J; Luke S; Owens W; Cromwell EF Assay Drug Dev Technol; 2015 Sep; 13(7):402-14. PubMed ID: 26317884 [TBL] [Abstract][Full Text] [Related]
9. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array. Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801 [TBL] [Abstract][Full Text] [Related]
10. iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device. LaBonia GJ; Ludwig KR; Mousseau CB; Hummon AB Anal Chem; 2018 Jan; 90(2):1423-1430. PubMed ID: 29227110 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202 [TBL] [Abstract][Full Text] [Related]
12. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018 [TBL] [Abstract][Full Text] [Related]
13. A Novel High-Throughput 3D Screening System for EMT Inhibitors: A Pilot Screening Discovered the EMT Inhibitory Activity of CDK2 Inhibitor SU9516. Arai K; Eguchi T; Rahman MM; Sakamoto R; Masuda N; Nakatsura T; Calderwood SK; Kozaki K; Itoh M PLoS One; 2016; 11(9):e0162394. PubMed ID: 27622654 [TBL] [Abstract][Full Text] [Related]
14. Reproducibility of Uniform Spheroid Formation in 384-Well Plates: The Effect of Medium Evaporation. Das V; Fürst T; Gurská S; Džubák P; Hajdúch M J Biomol Screen; 2016 Oct; 21(9):923-30. PubMed ID: 27226477 [TBL] [Abstract][Full Text] [Related]
15. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Patra B; Peng CC; Liao WH; Lee CH; Tung YC Sci Rep; 2016 Feb; 6():21061. PubMed ID: 26877244 [TBL] [Abstract][Full Text] [Related]
16. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays. Raghavan S; Ward MR; Rowley KR; Wold RM; Takayama S; Buckanovich RJ; Mehta G Gynecol Oncol; 2015 Jul; 138(1):181-9. PubMed ID: 25913133 [TBL] [Abstract][Full Text] [Related]
17. Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system. Zuchowska A; Kwapiszewska K; Chudy M; Dybko A; Brzozka Z Electrophoresis; 2017 Apr; 38(8):1206-1216. PubMed ID: 28090668 [TBL] [Abstract][Full Text] [Related]
18. RNAi High-Throughput Screening of Single- and Multi-Cell-Type Tumor Spheroids: A Comprehensive Analysis in Two and Three Dimensions. Fu J; Fernandez D; Ferrer M; Titus SA; Buehler E; Lal-Nag MA SLAS Discov; 2017 Jun; 22(5):525-536. PubMed ID: 28277887 [TBL] [Abstract][Full Text] [Related]
19. Multiplexed Viability Assays for High-Throughput Screening of Spheroids of Multiple Sizes. Marimuthu M; Gervais T Methods Mol Biol; 2023; 2644():435-447. PubMed ID: 37142939 [TBL] [Abstract][Full Text] [Related]
20. Concave microwell array-mediated three-dimensional tumor model for screening anticancer drug-loaded nanoparticles. Kang A; Seo HI; Chung BG; Lee SH Nanomedicine; 2015 Jul; 11(5):1153-61. PubMed ID: 25752856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]