These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 30567391)
21. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery. Borrero-de Acuña JM; Poblete-Castro I Microb Biotechnol; 2023 Feb; 16(2):262-285. PubMed ID: 35792877 [TBL] [Abstract][Full Text] [Related]
22. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. Vicente D; Proença DN; Morais PV Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833658 [TBL] [Abstract][Full Text] [Related]
23. Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: Production, characterization and in vitro biocompatibility evaluation. Israni N; Venkatachalam P; Gajaraj B; Varalakshmi KN; Shivakumar S J Environ Manage; 2020 Feb; 255():109884. PubMed ID: 32063322 [TBL] [Abstract][Full Text] [Related]
25. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760 [TBL] [Abstract][Full Text] [Related]
26. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Lhamo P; Behera SK; Mahanty B Biotechnol J; 2021 Sep; 16(9):e2100136. PubMed ID: 34132046 [TBL] [Abstract][Full Text] [Related]
27. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. Behera S; Priyadarshanee M; Vandana ; Das S Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614 [TBL] [Abstract][Full Text] [Related]
28. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. Wang J; Liu S; Huang J; Qu Z Bioresour Technol; 2021 Dec; 342():126008. PubMed ID: 34592618 [TBL] [Abstract][Full Text] [Related]
29. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Li M; Wilkins MR Int J Biol Macromol; 2020 Aug; 156():691-703. PubMed ID: 32315680 [TBL] [Abstract][Full Text] [Related]
30. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. González-Rojo S; Paniagua-García AI; Díez-Antolínez R Microorganisms; 2024 Aug; 12(8):. PubMed ID: 39203509 [TBL] [Abstract][Full Text] [Related]
31. The Patent Landscape of Polyhydroxyalkanoates Production by Algae and Cyanobacteria. Procópio DP; Cardoso LOB; Borrego BB; Gracioso LH; Oller Nascimento CA; Perpetuo EA; Stevani CV; Freire RS Recent Pat Biotechnol; 2023; 17(3):271-288. PubMed ID: 36503455 [TBL] [Abstract][Full Text] [Related]
32. Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging. Tripathi AD; Raj Joshi T; Kumar Srivastava S; Darani KK; Khade S; Srivastava J Prep Biochem Biotechnol; 2019; 49(6):567-577. PubMed ID: 30929621 [TBL] [Abstract][Full Text] [Related]
33. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review. Sabapathy PC; Devaraj S; Meixner K; Anburajan P; Kathirvel P; Ravikumar Y; Zabed HM; Qi X Bioresour Technol; 2020 Jun; 306():123132. PubMed ID: 32220472 [TBL] [Abstract][Full Text] [Related]
34. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects. Tan FHP; Nadir N; Sudesh K Front Bioeng Biotechnol; 2022; 10():879476. PubMed ID: 35646848 [TBL] [Abstract][Full Text] [Related]
35. Bacterial polyhydroxyalkanoates. Lee SY Biotechnol Bioeng; 1996 Jan; 49(1):1-14. PubMed ID: 18623547 [TBL] [Abstract][Full Text] [Related]
36. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria. Higuchi-Takeuchi M; Morisaki K; Toyooka K; Numata K PLoS One; 2016; 11(8):e0160981. PubMed ID: 27513570 [TBL] [Abstract][Full Text] [Related]
37. Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant. Troschl C; Meixner K; Drosg B Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952505 [TBL] [Abstract][Full Text] [Related]
38. Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by Bayon-Vicente G; Zarbo S; Deutschbauer A; Wattiez R; Leroy B Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651203 [TBL] [Abstract][Full Text] [Related]
39. Tailored biosynthesis of polyhydroxyalkanoates in chemostat cultures. Amstutz V; Hanik N; Pott J; Utsunomia C; Zinn M Methods Enzymol; 2019; 627():99-123. PubMed ID: 31630749 [TBL] [Abstract][Full Text] [Related]
40. Cyanobacterial Polyhydroxyalkanoates: A Sustainable Alternative in Circular Economy. Gomes Gradíssimo D; Pereira Xavier L; Valadares Santos A Molecules; 2020 Sep; 25(18):. PubMed ID: 32971731 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]