These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 30567641)
1. High-throughput deposition of chemical reagents via pen-plotting technique for microfluidic paper-based analytical devices. Rahbar M; Nesterenko PN; Paull B; Macka M Anal Chim Acta; 2019 Jan; 1047():115-123. PubMed ID: 30567641 [TBL] [Abstract][Full Text] [Related]
2. A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (μPADs) using technical drawing pens and in-house formulated aqueous inks. Nuchtavorn N; Macka M Anal Chim Acta; 2016 May; 919():70-77. PubMed ID: 27086101 [TBL] [Abstract][Full Text] [Related]
3. Geometrical Alignment of Multiple Fabrication Steps for Rapid Prototyping of Microfluidic Paper-Based Analytical Devices. Rahbar M; Nesterenko PN; Paull B; Macka M Anal Chem; 2017 Nov; 89(22):11918-11923. PubMed ID: 29090570 [TBL] [Abstract][Full Text] [Related]
4. T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices. Sitanurak J; Fukana N; Wongpakdee T; Thepchuay Y; Ratanawimarnwong N; Amornsakchai T; Nacapricha D Talanta; 2019 Dec; 205():120113. PubMed ID: 31450420 [TBL] [Abstract][Full Text] [Related]
5. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Chiang CK; Kurniawan A; Kao CY; Wang MJ Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613 [TBL] [Abstract][Full Text] [Related]
6. Paper-based inkjet-printed microfluidic analytical devices. Yamada K; Henares TG; Suzuki K; Citterio D Angew Chem Int Ed Engl; 2015 Apr; 54(18):5294-310. PubMed ID: 25864471 [TBL] [Abstract][Full Text] [Related]
7. Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach. Amin R; Ghaderinezhad F; Bridge C; Temirel M; Jones S; Toloueinia P; Tasoglu S Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32599882 [TBL] [Abstract][Full Text] [Related]
8. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring. de Castro LF; de Freitas SV; Duarte LC; de Souza JAC; Paixão TRLC; Coltro WKT Anal Bioanal Chem; 2019 Jul; 411(19):4919-4928. PubMed ID: 30941478 [TBL] [Abstract][Full Text] [Related]
9. Continuous-Ink, Multiplexed Pen-Plotter Approach for Low-Cost, High-Throughput Fabrication of Paper-Based Microfluidics. Amin R; Ghaderinezhad F; Li L; Lepowsky E; Yenilmez B; Knowlton S; Tasoglu S Anal Chem; 2017 Jun; 89(12):6351-6357. PubMed ID: 28598152 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems. Ebrahimi G; Pakchin PS; Mota A; Omidian H; Omidi Y Talanta; 2023 May; 257():124370. PubMed ID: 36858013 [TBL] [Abstract][Full Text] [Related]
11. Mickey mouse-shaped laminated paper-based analytical device in simultaneous total cholesterol and glucose determination in whole blood. Prakobkij A; Sukapanon S; Chunta S; Jarujamrus P Anal Chim Acta; 2023 Jul; 1263():341303. PubMed ID: 37225342 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric analysis of the decomposition of S-nitrosothiols on paper-based microfluidic devices. Ismail A; Araújo MO; Chagas CL; Griveau S; D'Orlyé F; Varenne A; Bedioui F; Coltro WK Analyst; 2016 Oct; 141(22):6314-6320. PubMed ID: 27722230 [TBL] [Abstract][Full Text] [Related]
13. Double-sided 3D printing on paper towards mass production of three-dimensional paper-based microfluidic analytical devices (3D-μPADs). Park C; Han YD; Kim HV; Lee J; Yoon HC; Park S Lab Chip; 2018 May; 18(11):1533-1538. PubMed ID: 29748672 [TBL] [Abstract][Full Text] [Related]
14. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis. de Oliveira RAG; Camargo F; Pesquero NC; Faria RC Anal Chim Acta; 2017 Mar; 957():40-46. PubMed ID: 28107832 [TBL] [Abstract][Full Text] [Related]
15. Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Cardoso TMG; de Souza FR; Garcia PT; Rabelo D; Henry CS; Coltro WKT Anal Chim Acta; 2017 Jun; 974():63-68. PubMed ID: 28535882 [TBL] [Abstract][Full Text] [Related]
16. A novel low-cost and simple fabrication technique for a paper-based analytical device using super glue. Kang HE; Bui TH; Han W; Lee YI; Shin JH Anal Chim Acta; 2024 Nov; 1329():343174. PubMed ID: 39396274 [TBL] [Abstract][Full Text] [Related]
17. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine. Zhang H; Smith E; Zhang W; Zhou A Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565 [TBL] [Abstract][Full Text] [Related]
18. Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Wang S; Ge L; Song X; Yu J; Ge S; Huang J; Zeng F Biosens Bioelectron; 2012 Jan; 31(1):212-8. PubMed ID: 22051546 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods. Komatsu T; Maeki M; Ishida A; Tani H; Tokeshi M Anal Sci; 2018; 34(1):39-44. PubMed ID: 29321455 [TBL] [Abstract][Full Text] [Related]
20. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Shibata H; Hiruta Y; Citterio D Analyst; 2019 Feb; 144(4):1178-1186. PubMed ID: 30560965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]