BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30567656)

  • 1. Gravitational field flow fractionation: Enhancing the resolution power by using an acoustic force field.
    Hwang JY; Youn S; Yang IH
    Anal Chim Acta; 2019 Jan; 1047():238-247. PubMed ID: 30567656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-thermal focusing field-flow fractionation.
    Janca J; Ananieva IA; Menshikova AY; Evseeva TG
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Feb; 800(1-2):33-40. PubMed ID: 14698233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-capacity channel designed for particle separation with controlled electric fields and evaluation of involved forces.
    Masudo T; Okada T
    J Chromatogr A; 2006 Feb; 1106(1-2):196-204. PubMed ID: 16443462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different elution modes and field programming in gravitational field-flow fractionation. 2. Experimental verification of the range of conditions for flow-rate and carrier liquid density programming.
    Plocková J; Chmelík J
    J Chromatogr A; 2000 Feb; 868(2):217-27. PubMed ID: 10701672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different elution modes and field programming in gravitational field-flow fractionation. IV. Field programming achieved with channels of non-constant cross-sections.
    Plocková J; Matulík F; Chmelík J
    J Chromatogr A; 2002 Apr; 955(1):95-103. PubMed ID: 12061568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction for particle-wall interactions in the separation of colloids by flow field-flow fractionation.
    Qing D; Schimpf ME
    Anal Chem; 2002 Jun; 74(11):2478-85. PubMed ID: 12069226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.
    Ai Y; Sanders CK; Marrone BL
    Anal Chem; 2013 Oct; 85(19):9126-34. PubMed ID: 23968497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation.
    Wang XB; Vykoukal J; Becker FF; Gascoyne PR
    Biophys J; 1998 May; 74(5):2689-701. PubMed ID: 9591693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of operating parameters on the retention of chromatographic particles by thermal field-flow fractionation.
    Regazzetti A; Hoyos M; Martin M
    Anal Chem; 2004 Oct; 76(19):5787-98. PubMed ID: 15456299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparisons of the acoustic radiation force of ultrasonic standing waves in half-wavelength and quarter-wavelength micro-resonators of cylindrical geometry.
    Yang IH; Kim N
    Ultrasonics; 2024 Mar; 138():107267. PubMed ID: 38367402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnitude and direction of thermal diffusion of colloidal particles measured by thermal field-flow fractionation.
    Shiundu PM; Williams PS; Giddings JC
    J Colloid Interface Sci; 2003 Oct; 266(2):366-76. PubMed ID: 14527460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of carbon nanotubes by frit inlet asymmetrical flow field-flow fractionation.
    Moon MH; Kang D; Jung J; Kim J
    J Sep Sci; 2004 Jun; 27(9):710-7. PubMed ID: 15387467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different elution modes and field programming in gravitational field-flow fractionation: field programming using density and viscosity gradients.
    Plocková J; Chmelík J
    J Chromatogr A; 2006 Jun; 1118(2):253-60. PubMed ID: 16696985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation of prion protein aggregates by asymmetrical flow field-flow fractionation.
    Silveira JR; Hughson AG; Caughey B
    Methods Enzymol; 2006; 412():21-33. PubMed ID: 17046649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap.
    Kuznetsova LA; Bazou D; Coakley WT
    Langmuir; 2007 Mar; 23(6):3009-16. PubMed ID: 17286416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of end effect-induced zone broadening in field-flow fractionation channels.
    Sant HJ; Kim JW; Gale BK
    Anal Chem; 2006 Dec; 78(23):7978-85. PubMed ID: 17134130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropic Contribution to the Retention of Nonspherical Particles in Field-Flow Fractionation.
    Beckett R; Giddings JC
    J Colloid Interface Sci; 1997 Feb; 186(1):53-9. PubMed ID: 9056300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric scaling effects on instrumental plate height in field flow fractionation.
    Sant HJ; Gale BK
    J Chromatogr A; 2006 Feb; 1104(1-2):282-90. PubMed ID: 16368105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel.
    Hawkes JJ; Barber RW; Emerson DR; Coakley WT
    Lab Chip; 2004 Oct; 4(5):446-52. PubMed ID: 15472728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.