BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 30567656)

  • 21. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparisons of the acoustic radiation force of ultrasonic standing waves in half-wavelength and quarter-wavelength micro-resonators of cylindrical geometry.
    Yang IH; Kim N
    Ultrasonics; 2024 Mar; 138():107267. PubMed ID: 38367402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnitude and direction of thermal diffusion of colloidal particles measured by thermal field-flow fractionation.
    Shiundu PM; Williams PS; Giddings JC
    J Colloid Interface Sci; 2003 Oct; 266(2):366-76. PubMed ID: 14527460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental study on inter-particle acoustic forces.
    Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R
    J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of field-flow fractionation in proteomics: presence and future.
    Chmelik J
    Proteomics; 2007 Aug; 7(16):2719-28. PubMed ID: 17639605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation of carbon nanotubes by frit inlet asymmetrical flow field-flow fractionation.
    Moon MH; Kang D; Jung J; Kim J
    J Sep Sci; 2004 Jun; 27(9):710-7. PubMed ID: 15387467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different elution modes and field programming in gravitational field-flow fractionation: field programming using density and viscosity gradients.
    Plocková J; Chmelík J
    J Chromatogr A; 2006 Jun; 1118(2):253-60. PubMed ID: 16696985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility study for combination of field-flow fractionation (FFF)-based separation of size-coded particle probes with amplified surface enhanced Raman scattering (SERS) tagging for simultaneous detection of multiple miRNAs.
    Shin K; Choi J; Kim Y; Lee Y; Kim J; Lee S; Chung H
    J Chromatogr A; 2018 Jun; 1556():97-102. PubMed ID: 29731290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic programming in step-split-flow lateral-transport thin fractionation.
    Ratier C; Hoyos M
    Anal Chem; 2010 Feb; 82(4):1318-25. PubMed ID: 20099837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fractionation of prion protein aggregates by asymmetrical flow field-flow fractionation.
    Silveira JR; Hughson AG; Caughey B
    Methods Enzymol; 2006; 412():21-33. PubMed ID: 17046649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic interaction forces between small particles in an ideal fluid.
    Silva GT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063007. PubMed ID: 25615187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II.
    Sachs S; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.
    Ben Haj Slama R; Gilles B; Ben Chiekh M; Béra JC
    Ultrasonics; 2017 Apr; 76():217-226. PubMed ID: 28135577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Field-flow fractionation of magnetic particles in a cyclic magnetic field.
    Bi Y; Pan X; Chen L; Wan QH
    J Chromatogr A; 2011 Jun; 1218(25):3908-14. PubMed ID: 21592484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.
    Dron O; Aider JL
    Ultrasonics; 2013 Sep; 53(7):1280-7. PubMed ID: 23628114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap.
    Kuznetsova LA; Bazou D; Coakley WT
    Langmuir; 2007 Mar; 23(6):3009-16. PubMed ID: 17286416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.
    Makan AC; Spallek MJ; du Toit M; Klein T; Pasch H
    J Chromatogr A; 2016 Apr; 1442():94-106. PubMed ID: 26987415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.