BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 30567656)

  • 41. Reduction of end effect-induced zone broadening in field-flow fractionation channels.
    Sant HJ; Kim JW; Gale BK
    Anal Chem; 2006 Dec; 78(23):7978-85. PubMed ID: 17134130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retention behavior of microparticles in gravitational field-flow fractionation (GrFFF): effect of ionic strength.
    Woo IS; Jung EC; Lee S
    Talanta; 2015 Jan; 132():945-53. PubMed ID: 25476401
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.
    Collins DJ; Ma Z; Han J; Ai Y
    Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Operational-modes of field-flow fractionation in microfluidic channels.
    Shendruk TN; Slater GW
    J Chromatogr A; 2012 Apr; 1233():100-8. PubMed ID: 22381891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance of a quarter-wavelength particle concentrator.
    Townsend RJ; Hill M; Harris NR; McDonnell MB
    Ultrasonics; 2008 Nov; 48(6-7):515-20. PubMed ID: 18664397
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles.
    Yohannes G; Jussila M; Hartonen K; Riekkola ML
    J Chromatogr A; 2011 Jul; 1218(27):4104-16. PubMed ID: 21292269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dielectrophoresis-field flow fractionation for separation of particles: A critical review.
    Waheed W; Sharaf OZ; Alazzam A; Abu-Nada E
    J Chromatogr A; 2021 Jan; 1637():461799. PubMed ID: 33385744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design and simulation of a microfluidic device for acoustic cell separation.
    Shamloo A; Boodaghi M
    Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Entropic Contribution to the Retention of Nonspherical Particles in Field-Flow Fractionation.
    Beckett R; Giddings JC
    J Colloid Interface Sci; 1997 Feb; 186(1):53-9. PubMed ID: 9056300
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasonic particle size fractionation in a moving air stream.
    Budwig RS; Anderson MJ; Putnam G; Manning C
    Ultrasonics; 2010 Jan; 50(1):26-31. PubMed ID: 19682719
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Geometric scaling effects on instrumental plate height in field flow fractionation.
    Sant HJ; Gale BK
    J Chromatogr A; 2006 Feb; 1104(1-2):282-90. PubMed ID: 16368105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel.
    Hawkes JJ; Barber RW; Emerson DR; Coakley WT
    Lab Chip; 2004 Oct; 4(5):446-52. PubMed ID: 15472728
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Elimination of edge effects in micro-thermal field-flow fractionation channel of low aspect ratio by splitting the carrier liquid flow into the main central stream and the thin stream layers at the side channel walls.
    Janca J; Dupák J
    J Chromatogr A; 2005 Mar; 1068(2):261-8. PubMed ID: 15830932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advances in field-flow fractionation for the analysis of biomolecules: instrument design and hyphenation.
    Schachermeyer S; Ashby J; Zhong W
    Anal Bioanal Chem; 2012 Sep; 404(4):1151-8. PubMed ID: 22573063
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.
    Plocková J; Chmelík J
    J Chromatogr A; 2001 May; 918(2):361-70. PubMed ID: 11407583
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.