These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

455 related articles for article (PubMed ID: 30567737)

  • 21. Mechanisms of the RNA helicases DDX42 and DDX46 in human U2 snRNP assembly.
    Yang F; Bian T; Zhan X; Chen Z; Xing Z; Larsen NA; Zhang X; Shi Y
    Nat Commun; 2023 Feb; 14(1):897. PubMed ID: 36797247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo.
    Lin KT; Lu RM; Tarn WY
    Mol Cell Biol; 2004 Oct; 24(20):9176-85. PubMed ID: 15456888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures.
    Jenkins JL; Kielkopf CL
    Trends Genet; 2017 May; 33(5):336-348. PubMed ID: 28372848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing.
    Tang Q; Rodriguez-Santiago S; Wang J; Pu J; Yuste A; Gupta V; Moldón A; Xu YZ; Query CC
    Genes Dev; 2016 Dec; 30(24):2710-2723. PubMed ID: 28087715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The SF3b155 N-terminal domain is a scaffold important for splicing.
    Cass DM; Berglund JA
    Biochemistry; 2006 Aug; 45(33):10092-101. PubMed ID: 16906767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1.
    Zhang J; Ali AM; Lieu YK; Liu Z; Gao J; Rabadan R; Raza A; Mukherjee S; Manley JL
    Mol Cell; 2019 Oct; 76(1):82-95.e7. PubMed ID: 31474574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic role for mammalian SF1/BBP in spliceosome assembly and function after polypyrimidine tract recognition by U2AF.
    Guth S; Valcárcel J
    J Biol Chem; 2000 Dec; 275(48):38059-66. PubMed ID: 10954700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical and NMR analyses of an SF3b155-p14-U2AF-RNA interaction network involved in branch point definition during pre-mRNA splicing.
    Spadaccini R; Reidt U; Dybkov O; Will C; Frank R; Stier G; Corsini L; Wahl MC; Lührmann R; Sattler M
    RNA; 2006 Mar; 12(3):410-25. PubMed ID: 16495236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different requirements of the kinase and UHM domains of KIS for its nuclear localization and binding to splicing factors.
    Manceau V; Kielkopf CL; Sobel A; Maucuer A
    J Mol Biol; 2008 Sep; 381(3):748-62. PubMed ID: 18588901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a small molecule splicing inhibitor targeting UHM domains.
    Kobayashi A; Clément MJ; Craveur P; El Hage K; Salone JM; Bollot G; Pastré D; Maucuer A
    FEBS J; 2022 Feb; 289(3):682-698. PubMed ID: 34520118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA induces conformational changes in the SF1/U2AF65 splicing factor complex.
    Gupta A; Jenkins JL; Kielkopf CL
    J Mol Biol; 2011 Feb; 405(5):1128-38. PubMed ID: 21146534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SF1 Phosphorylation Enhances Specific Binding to U2AF
    Chatrikhi R; Wang W; Gupta A; Loerch S; Maucuer A; Kielkopf CL
    Biophys J; 2016 Dec; 111(12):2570-2586. PubMed ID: 28002734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UHM-ULM interactions in the RBM39-U2AF65 splicing-factor complex.
    Stepanyuk GA; Serrano P; Peralta E; Farr CL; Axelrod HL; Geralt M; Das D; Chiu HJ; Jaroszewski L; Deacon AM; Lesley SA; Elsliger MA; Godzik A; Wilson IA; Wüthrich K; Salomon DR; Williamson JR
    Acta Crystallogr D Struct Biol; 2016 Apr; 72(Pt 4):497-511. PubMed ID: 27050129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pre-spliceosome formation in S.pombe requires a stable complex of SF1-U2AF(59)-U2AF(23).
    Huang T; Vilardell J; Query CC
    EMBO J; 2002 Oct; 21(20):5516-26. PubMed ID: 12374752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rational Design of Cyclic Peptide Inhibitors of U2AF Homology Motif (UHM) Domains To Modulate Pre-mRNA Splicing.
    Jagtap PK; Garg D; Kapp TG; Will CL; Demmer O; Lührmann R; Kessler H; Sattler M
    J Med Chem; 2016 Nov; 59(22):10190-10197. PubMed ID: 27753493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular genetic analysis of the heterodimeric splicing factor U2AF: the RS domain on either the large or small Drosophila subunit is dispensable in vivo.
    Rudner DZ; Breger KS; Rio DC
    Genes Dev; 1998 Apr; 12(7):1010-21. PubMed ID: 9531538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for the interaction between the first SURP domain of the SF3A1 subunit in U2 snRNP and the human splicing factor SF1.
    Nameki N; Takizawa M; Suzuki T; Tani S; Kobayashi N; Sakamoto T; Muto Y; Kuwasako K
    Protein Sci; 2022 Oct; 31(10):e4437. PubMed ID: 36173164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recognition of RNA branch point sequences by the KH domain of splicing factor 1 (mammalian branch point binding protein) in a splicing factor complex.
    Peled-Zehavi H; Berglund JA; Rosbash M; Frankel AD
    Mol Cell Biol; 2001 Aug; 21(15):5232-41. PubMed ID: 11438677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis of branch site recognition by the human spliceosome.
    Tholen J; Razew M; Weis F; Galej WP
    Science; 2022 Jan; 375(6576):50-57. PubMed ID: 34822310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of cancer-associated mutations in Hsh155/SF3b1 HEAT repeats 9-12 on pre-mRNA splicing in Saccharomyces cerevisiae.
    Kaur H; Groubert B; Paulson JC; McMillan S; Hoskins AA
    PLoS One; 2020; 15(4):e0229315. PubMed ID: 32320410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.