BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30567877)

  • 21. Inhibition of cytochrome P450 enzymes and uridine 5'-diphospho-glucuronosyltransferases by vicagrel in human liver microsomes: A prediction of potential drug-drug interactions.
    Liu S; Wang Z; Chan E; Zhao Y; Kang J; Zhang X; Tian X
    Chem Biol Interact; 2022 Jan; 352():109775. PubMed ID: 34910929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of cytochrome P450 forms involved in the 4-hydroxylation of valsartan, a potent and specific angiotensin II receptor antagonist, in human liver microsomes.
    Nakashima A; Kawashita H; Masuda N; Saxer C; Niina M; Nagae Y; Iwasaki K
    Xenobiotica; 2005 Jun; 35(6):589-602. PubMed ID: 16192110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetrahydrocannabinol and Its Major Metabolites Are Not (or Are Poor) Substrates or Inhibitors of Human P-Glycoprotein [ATP-Binding Cassette (ABC) B1] and Breast Cancer Resistance Protein (ABCG2).
    Chen X; Unadkat JD; Mao Q
    Drug Metab Dispos; 2021 Oct; 49(10):910-918. PubMed ID: 34326138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana.
    Huestis MA; Henningfield JE; Cone EJ
    J Anal Toxicol; 1992; 16(5):276-82. PubMed ID: 1338215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferases by MAM-2201 in human liver microsomes.
    Kong TY; Kim JH; Kwon SS; Cheong JC; Kim HS; In MK; Lee HS
    Arch Pharm Res; 2017 Jun; 40(6):727-735. PubMed ID: 28484907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolite Profiling and Reaction Phenotyping for the
    Yadav AS; Shah NR; Carlson TJ; Driscoll JP
    Chem Res Toxicol; 2020 Jan; 33(1):249-257. PubMed ID: 31815452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CYP2C9, CYP3A and CYP2C19 metabolize Δ9-tetrahydrocannabinol to multiple metabolites but metabolism is affected by human liver fatty acid binding protein (FABP1).
    Yabut KCB; Winnie Wen Y; Simon KT; Isoherranen N
    Biochem Pharmacol; 2024 Apr; ():116191. PubMed ID: 38583809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proof of active cannabis use comparing 11-hydroxy-∆9-tetrahydrocannabinol with 11-nor-9-carboxy-tetrahydrocannabinol concentrations.
    Franz T; Skopp G; Schwarz G; Musshoff F
    Drug Test Anal; 2018 Oct; 10(10):1573-1578. PubMed ID: 29845743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of repeated administration of 11-hydroxy-delta 8-tetrahydrocannabinol, an active metabolite of delta 8-tetrahydrocannabinol, on the hepatic microsomal drug-metabolizing enzyme system of mice.
    Watanabe K; Arai M; Narimatsu S; Yamamoto I; Yoshimura H
    Biochem Pharmacol; 1986 Jun; 35(11):1861-5. PubMed ID: 3013200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regioselective glucuronidation of gingerols by human liver microsomes and expressed UDP-glucuronosyltransferase enzymes: reaction kinetics and activity correlation analyses for UGT1A9 and UGT2B7.
    Wu Z; Liu H; Wu B
    J Pharm Pharmacol; 2015 Apr; 67(4):583-96. PubMed ID: 25496264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes.
    Watanabe K; Yamaori S; Funahashi T; Kimura T; Yamamoto I
    Life Sci; 2007 Mar; 80(15):1415-9. PubMed ID: 17303175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of phase II metabolism of 11-hydroxy-Δ-9-tetrahydrocannabinol and metabolite verification by chemical synthesis of 11-hydroxy-Δ-9-tetrahydrocannabinol-glucuronide.
    Hassenberg C; Clausen F; Hoffmann G; Studer A; Schürenkamp J
    Int J Legal Med; 2020 Nov; 134(6):2105-2119. PubMed ID: 32808050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics.
    Achour B; Russell MR; Barber J; Rostami-Hodjegan A
    Drug Metab Dispos; 2014 Apr; 42(4):500-10. PubMed ID: 24408517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasma cannabinoid concentrations during dronabinol pharmacotherapy for cannabis dependence.
    Milman G; Bergamaschi MM; Lee D; Mendu DR; Barnes AJ; Vandrey R; Huestis MA
    Ther Drug Monit; 2014 Apr; 36(2):218-24. PubMed ID: 24067260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of delta 9-tetrahydrocannabinol by cytochrome P450 isozymes purified from hepatic microsomes of monkeys.
    Matsunaga T; Iwawaki Y; Watanabe K; Yamamoto I; Kageyama T; Yoshimura H
    Life Sci; 1995; 56(23-24):2089-95. PubMed ID: 7776836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vitro Inhibition of Carboxylesterase 1 by Major Cannabinoids and Selected Metabolites.
    Qian Y; Wang X; Markowitz JS
    Drug Metab Dispos; 2019 May; 47(5):465-472. PubMed ID: 30833288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review.
    Stout SM; Cimino NM
    Drug Metab Rev; 2014 Feb; 46(1):86-95. PubMed ID: 24160757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of UDP-glucuronosyltransferase function by cytochrome P450: evidence for the alteration of UGT2B7-catalyzed glucuronidation of morphine by CYP3A4.
    Takeda S; Ishii Y; Iwanaga M; Mackenzie PI; Nagata K; Yamazoe Y; Oguri K; Yamada H
    Mol Pharmacol; 2005 Mar; 67(3):665-72. PubMed ID: 15611481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cannabinoid-Induced Inhibition of Morphine Glucuronidation and the Potential for In Vivo Drug-Drug Interactions.
    Coates S; Bardhi K; Lazarus P
    Pharmaceutics; 2024 Mar; 16(3):. PubMed ID: 38543313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Charactering the metabolism of cryptotanshinone by human P450 enzymes and uridine diphosphate glucuronosyltransferases in vitro.
    Zeng J; Fan YJ; Tan B; Su HZ; Li Y; Zhang LL; Jiang J; Qiu FR
    Acta Pharmacol Sin; 2018 Aug; 39(8):1393-1404. PubMed ID: 29417949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.