These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30568181)

  • 21. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.
    Vetterick GA; Gruber J; Suri PK; Baldwin JK; Kirk MA; Baldo P; Wang YQ; Misra A; Tucker GJ; Taheri ML
    Sci Rep; 2017 Sep; 7(1):12275. PubMed ID: 28947751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural effect of two-dimensional BNNS on grain growth suppressing behaviors in Al-matrix nanocomposites.
    Nam S; Chang K; Lee W; Kim MJ; Hwang JY; Choi H
    Sci Rep; 2018 Jan; 8(1):1614. PubMed ID: 29371625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cavity Swelling of 15-15Ti Steel at High Doses by Ion Irradiation.
    Liu C; Ma H; Fan P; Li K; Zhang Q; Du A; Feng W; Su X; Zhu S; Yuan D
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastrong nanotwinned pure nickel with extremely fine twin thickness.
    Duan F; Lin Y; Pan J; Zhao L; Guo Q; Zhang D; Li Y
    Sci Adv; 2021 Jun; 7(27):. PubMed ID: 34193428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Thermal Stability of Carbonyl Iron Nanocrystalline Microwave Absorbents by Pinning Grain Boundaries with SiBaFe Alloy Nanoparticles.
    Xu Y; Chen Z; Fu Z; Hu Y; Luo Y; Li W; Guan J
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid heating induced ultrahigh stability of nanograined copper.
    Li XY; Zhou X; Lu K
    Sci Adv; 2020 Apr; 6(17):eaaz8003. PubMed ID: 32494653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subgrain-controlled grain growth in the laser-melted 316 L promoting strength at high temperatures.
    Saeidi K; Akhtar F
    R Soc Open Sci; 2018 May; 5(5):172394. PubMed ID: 29892424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Neutron Irradiation on the Mechanical Properties, Swelling and Creep of Austenitic Stainless Steels.
    Griffiths M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The significance of deformation mechanisms on the fracture behavior of phase reversion-induced nanostructured austenitic stainless steel.
    Misra RDK; Injeti VSY; Somani MC
    Sci Rep; 2018 May; 8(1):7908. PubMed ID: 29784921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films.
    Wu K; Zhang JY; Li G; Wang YQ; Cui JC; Liu G; Sun J
    Nanotechnology; 2017 Nov; 28(44):445706. PubMed ID: 28840852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implications of Microstructure in Helium-Implanted Nanocrystalline Metals.
    Nathaniel JE; El-Atwani O; Huang S; Marian J; Leff AC; Baldwin JK; Hattar K; Taheri ML
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.
    El-Atwani O; Hinks JA; Greaves G; Gonderman S; Qiu T; Efe M; Allain JP
    Sci Rep; 2014 May; 4():4716. PubMed ID: 24796578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel.
    Rahimi S; Engelberg DL; Duff JA; Marrow TJ
    J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal stability of hierarchical microstructural features in additively manufactured stainless steel.
    Funch CV; Grumsen FB; da Silva Fanta AB; Christiansen TL; Somers MAJ
    Heliyon; 2023 Jun; 9(6):e16555. PubMed ID: 37274708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced thermal stability of nanograined metals below a critical grain size.
    Zhou X; Li XY; Lu K
    Science; 2018 May; 360(6388):526-530. PubMed ID: 29724953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation.
    Pal S; Meraj M
    J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy.
    Zhang Y; Tunes MA; Crespillo ML; Zhang F; Boldman WL; Rack PD; Jiang L; Xu C; Greaves G; Donnelly SE; Wang L; Weber WJ
    Nanotechnology; 2019 Jul; 30(29):294004. PubMed ID: 30947152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Radiation-tolerant Oxide Dispersion Strengthened Steel and its Microstructure Evolution under Helium-implantation and Heavy-ion Irradiation.
    Lu C; Lu Z; Wang X; Xie R; Li Z; Higgins M; Liu C; Gao F; Wang L
    Sci Rep; 2017 Jan; 7():40343. PubMed ID: 28079191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.
    Zou Y; Wheeler JM; Ma H; Okle P; Spolenak R
    Nano Lett; 2017 Mar; 17(3):1569-1574. PubMed ID: 28125236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of low-strain thermo-mechanical processing on grain boundary network characteristics in type 304 austenitic stainless steel.
    Engelberg DL; Humphreys FJ; Marrow TJ
    J Microsc; 2008 Jun; 230(Pt 3):435-44. PubMed ID: 18503670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.