These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30568445)

  • 1. Chemiplasmonics for high-throughput biosensors.
    Raghavendra AJ; Zhu J; Gregory W; Case F; Mulpur P; Khan S; Srivastava A; Podila R
    Int J Nanomedicine; 2018; 13():8051-8062. PubMed ID: 30568445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-wavelength immunoassays using surface plasmon-coupled emission.
    Matveeva E; Malicka J; Gryczynski I; Gryczynski Z; Lakowicz JR
    Biochem Biophys Res Commun; 2004 Jan; 313(3):721-6. PubMed ID: 14697250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence enhancement of fluorescent unnatural streptavidin by binding of a biotin analogue with spacer tail and its application to biotin sensing.
    Zhu X; Shinohara H
    ScientificWorldJournal; 2014; 2014():165369. PubMed ID: 24790550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold NanoBipyramids Performing as Highly Sensitive Dual-Modal Optical Immunosensors.
    Campu A; Lerouge F; Chateau D; Chaput F; Baldeck P; Parola S; Maniu D; Craciun AM; Vulpoi A; Astilean S; Focsan M
    Anal Chem; 2018 Jul; 90(14):8567-8575. PubMed ID: 29902917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunoassays based on directional surface plasmon-coupled emission.
    Matveeva E; Gryczynski Z; Gryczynski I; Lakowicz JR
    J Immunol Methods; 2004 Mar; 286(1-2):133-40. PubMed ID: 15087228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.
    Zhu X; Shinohara H; Miyatake R; Hohsaka T
    J Mol Recognit; 2016 Oct; 29(10):485-91. PubMed ID: 27178348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Ag-C60 nano-biosensors based on surface plasmon coupled emission for clinical and forensic applications.
    Mulpur P; Yadavilli S; Mulpur P; Kondiparthi N; Sengupta B; Rao AM; Podila R; Kamisetti V
    Phys Chem Chem Phys; 2015 Oct; 17(38):25049-54. PubMed ID: 26345678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C60 as an active smart spacer material on silver thin film substrates for enhanced surface plasmon coupled emission.
    Mulpur P; Podila R; Ramamurthy SS; Kamisetti V; Rao AM
    Phys Chem Chem Phys; 2015 Apr; 17(15):10022-7. PubMed ID: 25785916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and efficient design to improve the detection of biotin-streptavidin interaction with plasmonic nanobiosensors.
    Focsan M; Campu A; Craciun AM; Potara M; Leordean C; Maniu D; Astilean S
    Biosens Bioelectron; 2016 Dec; 86():728-735. PubMed ID: 27476053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: application to whole blood assays.
    Aslan K; Zhang Y; Geddes CD
    Anal Chem; 2009 May; 81(10):3801-8. PubMed ID: 19354285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip.
    Yuk JS; MacCraith BD; McDonagh C
    Biosens Bioelectron; 2011 Mar; 26(7):3213-8. PubMed ID: 21256731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoroughened plasmonic films for enhanced biosensing detection.
    Le Moal E; Lévêque-Fort S; Potier MC; Fort E
    Nanotechnology; 2009 Jun; 20(22):225502. PubMed ID: 19436093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ag/Au bi-metallic film based color surface plasmon resonance biosensor with enhanced sensitivity, color contrast and great linearity.
    Li CT; Lo KC; Chang HY; Wu HT; Ho JH; Yen TJ
    Biosens Bioelectron; 2012; 36(1):192-8. PubMed ID: 22560104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence enhancement by hollow plasmonic assembly and its biosensing application.
    Xie KX; Liu Q; Jia SS; Xiao XX
    Anal Chim Acta; 2021 Feb; 1144():96-101. PubMed ID: 33453802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional surface plasmon-coupled emission: A new method for high sensitivity detection.
    Lakowicz JR; Malicka J; Gryczynski I; Gryczynski Z
    Biochem Biophys Res Commun; 2003 Aug; 307(3):435-9. PubMed ID: 12893239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical sensors based on whispering gallery modes in fluorescent microbeads: response to specific interactions.
    Himmelhaus M; Krishnamoorthy S; Francois A
    Sensors (Basel); 2010; 10(6):6257-74. PubMed ID: 22219711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?
    Cao SH; Cai WP; Liu Q; Li YQ
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():317-36. PubMed ID: 22524220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative, Flexible, and Miniaturized Microfluidic Paper-Based Plasmonic Chip for Efficient Near-Infrared Metal Enhanced Fluorescence Biosensing and Imaging.
    Campu A; Muresan I; Craciun AM; Vulpoi A; Cainap S; Astilean S; Focsan M
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55925-55937. PubMed ID: 37983540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DNAzyme assay coupled with effective magnetic separation and rolling circle amplification for detection of lead cations with a smartphone camera.
    Lu W; Lin C; Yang J; Wang X; Yao B; Wang M
    Anal Bioanal Chem; 2019 Aug; 411(21):5383-5391. PubMed ID: 31179527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Plasmon-Assisted Fluorescence Enhancing and Quenching: From Theory to Application.
    Su Q; Jiang C; Gou D; Long Y
    ACS Appl Bio Mater; 2021 Jun; 4(6):4684-4705. PubMed ID: 35007020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.