These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30568822)

  • 1. The Qsar Study of Azole Derivatives Using Molecular Descriptors for Quantum Molecular States.
    Amzoiu MO; Cristea OM
    Curr Health Sci J; 2016; 42(2):125-129. PubMed ID: 30568822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: a study of quantum chemical descriptors from density functional theory.
    Wan J; Zhang L; Yang G; Zhan CG
    J Chem Inf Comput Sci; 2004; 44(6):2099-105. PubMed ID: 15554680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does electron-correlation has any role in the quantitative structure-activity relationships?
    Vikas ; Reenu ; Chayawan
    J Mol Graph Model; 2013 May; 42():7-16. PubMed ID: 23501159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure and QSAR study on antispasmodic activity of some xanthoxyline derivatives.
    dos Santos R; Kuhnen CA; Yunes RA
    Arch Pharm (Weinheim); 2006 May; 339(5):227-37. PubMed ID: 16572479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Management of drug and food interactions with azole antifungal agents in transplant recipients.
    Dodds-Ashley E
    Pharmacotherapy; 2010 Aug; 30(8):842-54. PubMed ID: 20653361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron-correlation based externally predictive QSARs for mutagenicity of nitrated-PAHs in Salmonella typhimurium TA100.
    Reenu ; Vikas
    Ecotoxicol Environ Saf; 2014 Mar; 101():42-50. PubMed ID: 24507125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new computational model for the prediction of toxicity of phosphonate derivatives using QSPR.
    Camacho-Mendoza RL; Aquino-Torres E; Cordero-Pensado V; Cruz-Borbolla J; Alvarado-Rodríguez JG; Thangarasu P; Gómez-Castro CZ
    Mol Divers; 2018 May; 22(2):269-280. PubMed ID: 29532429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR of benzene derivatives: comparison of classical descriptors, quantum theoretic parameters and flip regression, exemplified by phenylalkylamine hallucinogens.
    Clare BW
    J Comput Aided Mol Des; 2002; 16(8-9):611-33. PubMed ID: 12602954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anabolic and androgenic activities of 19-nor-testosterone steroids: QSAR study using quantum and physicochemical molecular descriptors.
    Alvarez-Ginarte YM; Montero-Cabrera LA; de la Vega JM; Noheda-Marín P; Marrero-Ponce Y; Ruíz-García JA
    J Steroid Biochem Mol Biol; 2011 Aug; 126(1-2):35-45. PubMed ID: 21514384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR of Chalcones Utilizing Theoretical Molecular Descriptors.
    Nandi S; Bagchi MC
    Curr Comput Aided Drug Des; 2015; 11(2):184-93. PubMed ID: 26135340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR models for the removal of organic micropollutants in four different river water matrices.
    Sudhakaran S; Calvin J; Amy GL
    Chemosphere; 2012 Apr; 87(2):144-50. PubMed ID: 22245076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Topological, Electronic, Geometrical, Constitutional and Quantum Chemical Based Descriptors in QSAR: mPGES-1 as a Case Study.
    Gupta A; Kumar V; Aparoy P
    Curr Top Med Chem; 2018; 18(13):1075-1090. PubMed ID: 30027847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Externally predictive quantitative modeling of supercooled liquid vapor pressure of polychlorinated-naphthalenes through electron-correlation based quantum-mechanical descriptors.
    Vikas ; Chayawan
    Chemosphere; 2014 Jan; 95():448-54. PubMed ID: 24168755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-QSAR studies of the chemical modification of hydroxyl groups of biomass (cellulose, hemicelluloses and lignin) using quantum chemical descriptors.
    Elrhayam Y; Elharfi A
    Heliyon; 2019 Aug; 5(8):e02173. PubMed ID: 31485496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.
    Reenu ; Vikas
    J Mol Graph Model; 2015 Sep; 61():89-101. PubMed ID: 26188798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative structure-Activity relationship study of the skin irritation potential of phenols.
    Hayashi M; Nakamura Y; Higashi K; Kato H; Kishida F; Kaneko H
    Toxicol In Vitro; 1999 Dec; 13(6):915-22. PubMed ID: 20654567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valence Virtual Orbitals: An Unambiguous ab Initio Quantification of the LUMO Concept.
    Schmidt MW; Hull EA; Windus TL
    J Phys Chem A; 2015 Oct; 119(41):10408-27. PubMed ID: 26430954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of gallium nitride nanocage as a carrier for 5-fluorouracil anticancer drug.
    Wazzan N; Soliman KA; Halim WSA
    J Mol Model; 2019 Aug; 25(9):265. PubMed ID: 31444705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Externally predictive single-descriptor based QSPRs for physico-chemical properties of polychlorinated-naphthalenes: Exploring relationships of logS(W), logK(OA), and logK(OW) with electron-correlation.
    Chayawan ; Vikas
    J Hazard Mater; 2015 Oct; 296():68-81. PubMed ID: 25913673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of gas-phase reaction rate constants of alkylnaphthalenes with chlorine, hydroxyl and nitrate radicals.
    Long X; Niu J
    Chemosphere; 2007 May; 67(10):2028-34. PubMed ID: 17239921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.