These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30569327)

  • 1. Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity.
    Caja Rivera R; Barradas I
    Bull Math Biol; 2019 Nov; 81(11):4447-4469. PubMed ID: 30569327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.
    Bichara D; Iggidr A; Smith L
    Bull Math Biol; 2018 Jul; 80(7):1810-1848. PubMed ID: 29696599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis.
    Rivera RC; Bilal S; Michael E
    Math Biosci Eng; 2020 Aug; 17(5):5561-5583. PubMed ID: 33120566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Andean cutaneous leishmaniasis (Andean-CL, uta) in Peru and Ecuador: the vector Lutzomyia sand flies and reservoir mammals.
    Hashiguchi Y; Gomez L EA; Cáceres AG; Velez LN; Villegas NV; Hashiguchi K; Mimori T; Uezato H; Kato H
    Acta Trop; 2018 Feb; 178():264-275. PubMed ID: 29224978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of asymptomatics and dogs on leishmaniasis propagation.
    Esteva L; Vargas C; Vargas de León C
    Math Biosci; 2017 Nov; 293():46-55. PubMed ID: 28864398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural Leishmania infection of Lutzomyia spp. in Peru.
    Perez JE; Ogusuku E; Inga R; Lopez M; Monje J; Paz L; Nieto E; Arevalo J; Guerra H
    Trans R Soc Trop Med Hyg; 1994; 88(2):161-4. PubMed ID: 8036658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Threshold Infection Level for [Formula: see text] Invasion in a Two-Sex Mosquito Population Model.
    Li D; Wan H
    Bull Math Biol; 2019 Jul; 81(7):2596-2624. PubMed ID: 31161558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemiology of Andean cutaneous leishmaniasis: incrimination of Lutzomyia ayacuchensis (Diptera: psychodidae) as a vector of Leishmania in geographically isolated, upland valleys of Peru.
    Caceres AG; Villaseca P; Dujardin JC; Bañuls AL; Inga R; Lopez M; Arana M; Le Ray D; Arevalo J
    Am J Trop Med Hyg; 2004 Jun; 70(6):607-12. PubMed ID: 15211000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and Hopf Bifurcation of a Vector-Borne Disease Model with Saturated Infection Rate and Reinfection.
    Hu Z; Yin S; Wang H
    Comput Math Methods Med; 2019; 2019():1352698. PubMed ID: 31341509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A climate-based malaria model with the use of bed nets.
    Wang X; Zhao XQ
    J Math Biol; 2018 Jul; 77(1):1-25. PubMed ID: 28965238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Malaria Control Measures' Effectiveness Using Multistage Vector Model.
    Kamgang JC; Thron CP
    Bull Math Biol; 2019 Nov; 81(11):4366-4411. PubMed ID: 31286347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The epidemic threshold of vector-borne diseases with seasonality: the case of cutaneous leishmaniasis in Chichaoua, Morocco.
    Bacaër N; Guernaoui S
    J Math Biol; 2006 Sep; 53(3):421-36. PubMed ID: 16823580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Mathematical Study to Control Visceral Leishmaniasis: An Application to South Sudan.
    Ghosh I; Sardar T; Chattopadhyay J
    Bull Math Biol; 2017 May; 79(5):1100-1134. PubMed ID: 28357614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of vector modeling in a minimalistic epidemic model.
    Rashkov P; Venturino E; Aguiar M; Stollenwerk N; W Kooi B
    Math Biosci Eng; 2019 May; 16(5):4314-4338. PubMed ID: 31499664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifurcation analysis and global dynamics of a mathematical model of antibiotic resistance in hospitals.
    Cen X; Feng Z; Zheng Y; Zhao Y
    J Math Biol; 2017 Dec; 75(6-7):1463-1485. PubMed ID: 28396937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical Analysis of the Ross-Macdonald Model with Quarantine.
    Jin X; Jin S; Gao D
    Bull Math Biol; 2020 Apr; 82(4):47. PubMed ID: 32242279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission Fitness in Co-colonization and the Persistence of Bacterial Pathogens.
    Gaivão M; Dionisio F; Gjini E
    Bull Math Biol; 2017 Sep; 79(9):2068-2087. PubMed ID: 28741105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.